scholarly journals The JAK Inhibitor Tofacitinib Rescues Intestinal Barrier Defects Caused by Disrupted Epithelial-macrophage Interactions

Author(s):  
Marianne R Spalinger ◽  
Anica Sayoc-Becerra ◽  
Christ Ordookhanian ◽  
Vinicius Canale ◽  
Alina N Santos ◽  
...  

Abstract Background and Aims Loss-of-function variants in protein tyrosine phosphatase non-receptor type-2 [PTPN2] promote susceptibility to inflammatory bowel diseases [IBD]. PTPN2 regulates Janus-kinase [JAK] and signal transducer and activator of transcription [STAT] signalling, while protecting the intestinal epithelium from inflammation-induced barrier disruption. The pan-JAK inhibitor tofacitinib is approved to treat ulcerative colitis, but its effects on intestinal epithelial cell-macrophage interactions and on barrier properties are unknown. We aimed to determine if tofacitinib can rescue disrupted epithelial-macrophage interaction and barrier function upon loss of PTPN2. Methods Human Caco-2BBe intestinal epithelial cells [IECs] and THP-1 macrophages expressing control or PTPN2-specific shRNA were co-cultured with tofacitinib or vehicle. Transepithelial electrical resistance and 4 kDa fluorescein-dextran flux were measured to assess barrier function. Ptpn2fl/fl and Ptpn2-LysMCre mice, which lack Ptpn2 in myeloid cells, were treated orally with tofacitinib citrate twice daily to assess the in vivo effect on the intestinal epithelial barrier. Colitis was induced via administration of 1.5% dextran sulphate sodium [DSS] in drinking water. Results Tofacitinib corrected compromised barrier function upon PTPN2 loss in macrophages and/or IECs via normalisation of: [i] tight junction protein expression; [ii] excessive STAT3 signalling; and [iii] IL-6 and IL-22 secretion. In Ptpn2-LysMCre mice, tofacitinib reduced colonic pro-inflammatory macrophages, corrected underlying permeability defects, and prevented the increased susceptibility to DSS colitis. Conclusions PTPN2 loss in IECs or macrophages compromises IEC-macrophage interactions and reduces epithelial barrier integrity. Both of these events were corrected by tofacitinib in vitro and in vivo. Tofacitinib may have greater therapeutic efficacy in IBD patients harbouring PTPN2 loss-of-function mutations.

2020 ◽  
Vol 11 (4) ◽  
pp. 3657-3667
Author(s):  
Han Su ◽  
Weijie Zhao ◽  
Fenglin Zhang ◽  
Min Song ◽  
Fangfang Liu ◽  
...  

In vitro and in vivo studies show that c9, t11-CLA, but not t10, c12-CLA isomer, impairs intestinal epithelial barrier function in IPEC-J2 cells and mice via activation of GPR120-[Ca2+]i and the MLCK pathway.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S28-S28
Author(s):  
Ivy Ka Man Law ◽  
Carl Rankin ◽  
Charalabos Pothoulakis

Abstract Background and Aims Colonic epithelial integrity is often compromised during colonic inflammation and Inflammatory Bowel Disease. Aftiphilin (AFTPH) is a downstream target of microRNA-133a and its expression is reduced in colonic tissues of wild type mice from experimental colitis models and colonic biopsies from patients with ulcerative colitis. We have previously shown that AFTPH is involved in regulating intestinal epithelial barrier function and actin organization in human colonic epithelial cells in vitro (DDW 2016). On the other hand, our results suggested that global aftiphilin knock-out is embryonic lethal in mouse models (DDW 2019). Here, we further examined the role of AFTPH in regulating actin organization in vitro and characterize the colonic epithelial cell-specific aftiphilin knock-out mice. Methods Human colonic epithelial NCM460 cells were transfected with si-RNA against AFTPH to achieve transient AFTPH gene-silencing. Stable AFTPH knock-down clones were generated by transducing Caco2-BBE cells with recombinant lentivirus carrying sh-AFTPH or control sh-RNA. To create intestinal epithelial cell-specific aftiphilin knock-out mice, Aftph flox/flox mice were cross-bred with B6.Cg-Tg(Vil1-cre)997Gum/J mice, which express Villin-driven Cre recombinase (Vil-Cre), to generate intestinal epithelial cell-specific aftiphilin knock-out mice (Aftph Vil-/Vil-). Protein expression of F- and G-actin and p70S6K were detected using Western blot. Tissues from various organs were collected with Aftph Vil-/Vil- and its wildtype counterparts at 12 weeks. Results Results from western blot analysis showed that F-/G-actin ratio in AFTPH gene-silenced NCM460 cells were 0.6±0.17 fold, when compared to the treatment control. In addition, AFTPH gene-silencing in human colonic epithelial cells activated p70S6K, a kinase that is involved in actin organization, when compared to treatment control (1.2±0.15 vs. 2.0±0.15, p=0.0354). Furthermore, transepithelial electric resistance (TER) of Caco2-BBE cells deficient in AFTPH is significantly lower than that of control cells (0.5±0.07 fold). Lastly, in vivo intestinal epithelial cell-specific Aftph knock-out increased the length of small intestine, when compared to that of wild type mice (30.7±0.33 vs. 34.8±0.97, p=0.02), while the tissue weight of spleen to body weight was reduced (0.30±0.011 vs. 0.26±0.006, p=0.0169). Summary and Conclusions Our results indicate that AFTPH directly regulates epithelial barrier function and actin organization through mediating F-/G-actin ratio in human colonic epithelial cells, possibly through p70S6K. Importantly, intestinal epithelial cell-specific knock-out in vivo increased intestinal length and reduced size of the spleen. Our results suggested that AFTPH is crucial in regulating colonic epithelial barrier function in vitro and intestinal homeostasis.


2012 ◽  
Vol 172 (2) ◽  
pp. 302
Author(s):  
V. Poroyko ◽  
T. Mirzapoiazova ◽  
E.M. Carlisle ◽  
M.S. Caplan ◽  
J. Alverdy ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Shara Francesca Rapa ◽  
Rosanna Di Paola ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
...  

Intestinal epithelial barrier impairment plays a key pathogenic role in inflammatory bowel diseases (IBDs). In particular, together with oxidative stress, intestinal epithelial barrier alteration is considered as upstream event in ulcerative colitis (UC). In order to identify new products of natural origin with a potential activity for UC treatment, this study evaluated the effects of plumericin, a spirolactone iridoid, present as one of the main bioactive components in the bark of Himatanthus sucuuba (Woodson). Plumericin was evaluated for its ability to improve barrier function and to reduce apoptotic parameters during inflammation, both in intestinal epithelial cells (IEC-6), and in an animal experimental model of 2, 4, 6-dinitrobenzene sulfonic acid (DNBS)-induced colitis. Our results indicated that plumericin increased the expression of adhesion molecules, enhanced IEC-6 cells actin cytoskeleton rearrangement, and promoted their motility. Moreover, plumericin reduced apoptotic parameters in IEC-6. These results were confirmed in vivo. Plumericin reduced the activity of myeloperoxidase, inhibited the expression of ICAM-1, P-selectin, and the formation of PAR, and reduced apoptosis parameters in mice colitis induced by DNBS. These results support a pharmacological potential of plumericin in the treatment of UC, due to its ability to improve the structural integrity of the intestinal epithelium and its barrier function.


2018 ◽  
Author(s):  
Hongying Fan ◽  
Ruqin Lin ◽  
Zhenhui Chen ◽  
Xingyu Leng ◽  
Xianbo Wu ◽  
...  

AbstractCronobacter sakazakii (CS), an important pathogen, is associated with the development of necrotizing enterocolitis (NEC), infant sepsis, and meningitis. Several randomized prospective clinical trials demonstrated that oral probiotics could decrease the incidence of NEC. Previously, we isolated and characterized a novel probiotic, B. fragilis strain ZY-312. However, it remains unclear how ZY-312 protects the host from the effects of CS infection. To understand the underlying mechanisms triggering the probiotic effects, we tested the hypothesis that there was a cross-talk between probiotics/probiotics-modulated microbiota and the local immune system, governed by the permeability of the intestinal mucosa using in vitro and in vivo models for the intestinal permeability. The probiotic effects of ZY-312 on intestinal epithelial cells were first examined, which revealed that ZY-312 inhibited CS invasion, CS-induced dual cell death (pyroptosis and apoptosis), and epithelial barrier dysfunction in vitro and in vivo. ZY-312 also decreased the expression of an inflammasome (NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3), caspase-3, and serine protease caspase-1 in a neonatal rat model. Furthermore, ZY-312 significantly modulated the compositions of the intestinal bacterial communities, and decreased the relative abundances of Proteobacteria, Gamma proteobacteria, but increased the relative abundance of Bacteroides and Bacillus in neonatal rats. In conclusion, our findings have shown for the first time that the probiotic, B. fragilis ZY-312, suppresses CS-induced NEC by modulating the pro-inflammatory response and dual cell death (apoptosis and pyroptosis).Author summaryCronobacter sakazakii, a major necrotizing enterocolitis pathogen, is used as a model microorganism for the study of opportunistic bacteria in the pathogenesis of necrotizing enterocolitis. Here, we have now unequivocally demonstrated that both apoptotic and pyroptotic stimuli contribute to the pathogenesis of Cronobacter sakazakii -induced necrotizing enterocolitis. Previously, we isolated and characterized a novel probiotic, B. fragilis strain ZY-312. We found that the ZY-312 defense against Cronobacter sakazakii-induced necrotizing enterocolitis by inhibiting Cronobacter sakazakii invasion, epithelial barrier dysfunction, the expression of inflammatory cytokines and dual cell death (pyroptosis and apoptosis). This study demonstrates the utility of ZY-312 as a promising probiotic agent for the prevention and treatment of various intestinal diseases, including NEC.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


2019 ◽  
Vol 30 (5) ◽  
pp. 566-578 ◽  
Author(s):  
Shuling Fan ◽  
Caroline M. Weight ◽  
Anny-Claude Luissint ◽  
Roland S. Hilgarth ◽  
Jennifer C. Brazil ◽  
...  

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


Sign in / Sign up

Export Citation Format

Share Document