scholarly journals Non-invasive in vivo imaging of acute thrombosis: development of a novel factor XIIIa radiotracer

2019 ◽  
Vol 21 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Jack P M Andrews ◽  
Christophe Portal ◽  
Tashfeen Walton ◽  
Mark G Macaskill ◽  
Patrick W F Hadoke ◽  
...  

Abstract Aims Cardiovascular thrombosis is responsible a quarter of deaths annually worldwide. Current imaging methods for cardiovascular thrombosis focus on anatomical identification of thrombus but cannot determine thrombus age or activity. Molecular imaging techniques hold promise for identification and quantification of thrombosis in vivo. Our objective was to assess a novel optical and positron-emitting probe targeting Factor XIIIa (ENC2015) as biomarker of active thrombus formation. Methods and results Optical and positron-emitting ENC2015 probes were assessed ex vivo using blood drawn from human volunteers and passed through perfusion chambers containing denuded porcine aorta as a model of arterial injury. Specificity of ENC2015 was established with co-infusion of a factor XIIIa inhibitor. In vivo18F-ENC2015 biodistribution, kinetics, radiometabolism, and thrombus binding were characterized in rats. Both Cy5 and fluorine-18 labelled ENC2015 rapidly and specifically bound to thrombi. Thrombus uptake was inhibited by a factor XIIIa inhibitor. 18F-ENC2015 remained unmetabolized over 8 h when incubated in ex vivo human blood. In vivo, 42% of parent radiotracer remained in blood 60 min post-administration. Biodistribution studies demonstrated rapid clearance from tissues with elimination via the urinary system. In vivo,18F-ENC2015 uptake was markedly increased in the thrombosed carotid artery compared to the contralateral patent artery (mean standard uptake value ratio of 2.40 vs. 0.74, P < 0.0001). Conclusion  ENC2015 rapidly and selectively binds to acute thrombus in both an ex vivo human translational model and an in vivo rodent model of arterial thrombosis. This probe holds promise for the non-invasive identification of thrombus formation in cardiovascular disease.

Author(s):  
Barbara Cisterna ◽  
Federico Boschi ◽  
Anna Cleta Croce ◽  
Rachele Podda ◽  
Serena Zanzoni ◽  
...  

Optical Imaging (OI) is an emerging field developed in recent years which can be a very versatile, fast and non-invasive approach for the acquisition of images of  small (few centimetres) sized samples, such as layers of cells (in vitro), small animals (in vivo), animal organs (ex vivo) and innovative materials. OI was primarily developed for biomedical applications to study the progression of some pathologies and to assess the efficacy of new pharmaceutical compounds. Here we applied the OI technique to a completely new field: the study of food optical properties. In this case we exploited the optical properties of endogenous molecules, which are generally considered responsible of a background noise affecting the investigation. Here we used this sort of “noise”, named autofluorescence, to obtain information on the drying of Corvinone grapes employed for Amarone wine production. OI can provide interesting information and, inserted in a multimodal approach, it may be a real support to other techniques in the description of a biological phenomenon.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 971
Author(s):  
Ana Cláudia Camargo Miranda ◽  
Sofia Nascimento dos Santos ◽  
Leonardo Lima Fuscaldi ◽  
Luiza Mascarenhas Balieiro ◽  
Maria Helena Bellini ◽  
...  

The oncogene HER2 is an important molecular target in oncology because it is associated with aggressive disease and the worst prognosis. The development of non-invasive imaging techniques and target therapies using monoclonal antibodies is a rapidly developing field. Thus, this work proposes the study of the radioimmunotheranostic pair, [111In]In-DTPA-trastuzumab and [177Lu]Lu-DOTA-trastuzumab, evaluating the influence of the chelating agents and radionuclides on the biological properties of the radioimmunoconjugates (RICs). The trastuzumab was immunoconjugated with the chelators DTPA and DOTA and radiolabeled with [111In]InCl3 and [177Lu]LuCl3, respectively. The stability of the RICs was evaluated in serum, and the immunoreactive and internalization fractions were determined in SK-BR-3 breast cancer cells. The in vivo pharmacokinetics and dosimetry quantification and the ex vivo biodistribution were performed in normal and SK-BR-3 tumor-bearing mice. The data showed that there was no influence of the chelating agents and radionuclides on the immunoreactive and internalization fractions of RICs. In contrast, they influenced the stability of RICs in serum, as well as the pharmacokinetics, dosimetry and biodistribution profiles. Therefore, the results showed that the nature of the chelating agent and radionuclide could influence the biological properties of the radioimmunotheranostic pair.


Author(s):  
Rong Ye ◽  
Catarina Rua ◽  
Claire O’Callaghan ◽  
P Simon Jones ◽  
Frank Hezemans ◽  
...  

AbstractEarly and profound pathological changes are evident in the locus coeruleus (LC) in dementia and Parkinson’s disease, with effects on arousal, attention, cognitive and motor control. The LC can be identified in vivo using non-invasive magnetic resonance imaging techniques which have potential as biomarkers for detecting and monitoring disease progression. Technical limitations of existing imaging protocols have impaired the sensitivity to regional contrast variance or the spatial variability on the rostrocaudal extent of the LC, with spatial mapping consistent with post mortem findings. The current study employs a sensitive magnetisation transfer sequence using ultrahigh field 7T MRI to investigate the LC structure in vivo at high-resolution (resolution 0.4×0.4×0.5 mm, duration seven minutes). Magnetisation transfer images from 53 healthy older volunteers (52-84 years) revealed the spatial features of the LC and were used to create a probabilistic LC atlas for older adults, appropriate for clinical research. Consistent rostrocaudal gradients of slice-wise volume, contrast and variance differences of the LC were observed, mirroring distinctive ex vivo spatial distributions of LC cells in its subregions. The contrast-to-noise ratios were calculated for the peak voxels, and for the averaged signals within the atlas, to accommodate the volumetric differences in estimated contrast. The probabilistic atlas is freely available, and the MRI dataset is available for researchers, for replication or to facilitate accurate LC localisation and unbiased contrast extraction in future studies.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2348
Author(s):  
Leon Riehakainen ◽  
Chiara Cavallini ◽  
Paolo Armanetti ◽  
Daniele Panetta ◽  
Davide Caramella ◽  
...  

Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.


1999 ◽  
Vol 81 (01) ◽  
pp. 157-160 ◽  
Author(s):  
Ross Bentley ◽  
Suzanne Morgan ◽  
Karen Brown ◽  
Valeria Chu ◽  
Richard Ewing ◽  
...  

SummaryThe in vivo antithrombotic activity of RPR120844, a novel synthetic coagulation factor Xa (fXa) inhibitor (Ki = 7 nM), was assessed by its ability to inhibit thrombus formation in a damaged segment of the rabbit jugular vein. Intravenous dose-response studies were performed and thrombus mass (TM), activated partial thromboplastin time (APTT), prothrombin time (PT), inhibition of ex vivo fXa activity and plasma drug levels (PDL) were determined. TM, measured at the end of a 50 min infusion, was significantly reduced (p <0.05 vs saline-treated animals) by RPR120844 at 30 and 100 μg/kg/min. At doses of 10, 30 and 100 μg/kg/min, APTT was prolonged by 2.1, 4.2 and 6.1-fold, and PT was prolonged by 1.4, 2.2 and 3.5-fold, respectively. PDL were determined by measuring anti-fXa activity using an amidolytic assay. Peak PDL were 0.8 ± 0.3, 1.5 ± 0.9 and 2.4 ± 0.6 μM, respectively. The drug effect was reversible with APTT, PT and PDL returning toward pretreatment values 30 min after termination of treatment. The results suggest that RPR120844, or similar compounds, may provide an efficacious, yet easily reversible, means of inhibiting thrombus formation.


2014 ◽  
Vol 112 (08) ◽  
pp. 412-418 ◽  
Author(s):  
Nima Vaezzadeh ◽  
Ran Ni ◽  
Paul Y. Kim ◽  
Jeffrey I. Weitz ◽  
Peter L. Gross

SummaryHaemostatic impairments are studied in vivo using one of several murine bleeding models. However it is not known whether these models are equally appropriate for assessing coagulation or platelet function defects. It was our study objective to assess the performance of arterial, venous and combined arterial and venous murine bleeding models towards impaired coagulation or platelet function. Unfractionated heparin (UFH) or αIIbβ3 inhibitory antibody (Leo.H4) were administered to mice, and their effects on bleeding in saphenous vein, artery, and tail tip transection models were quantified and correlated with their effects on plasma clotting and ADP-induced platelet aggregation, respectively. All models exhibited similar sensitivity with UFH (EC50 dose = 0.19, 0.13 and 0.07 U/g, respectively) (95% CI = 0.14 – 0.27, 0.08 – 0.20, and 0.03 – 0.16 U/g, respectively). Maximal inhibition of ex vivo plasma clotting could be achieved with UFH doses as low as 0.03 U/g. In contrast, the saphenous vein bleeding model was less sensitive to αIIbβ3 inhibition (EC50 = 6.9 µg/ml) than tail transection or saphenous artery bleeding models (EC50 = 0.12 and 0.37 µg/ml, respectively) (95% CI = 2.4 – 20, 0.05 – 0.33, and 0.06 – 2.2 µg/ml, respectively). The EC50 of Leo.H4 for ADP-induced platelet aggregation in vitro (8.0 µg/ml) was at least 20-fold higher than that of the tail and arterial, but not the venous bleeding model. In conclusion, venous, arterial and tail bleeding models are similarly affected by impaired coagulation, while platelet function defects have a greater influence in models incorporating arterial injury.


2005 ◽  
Vol 4 (4) ◽  
pp. 7290.2005.05133 ◽  
Author(s):  
Matthew J. Hardwick ◽  
Ming-Kai Chen ◽  
Kwamena Baidoo ◽  
Martin G. Pomper ◽  
Tomás R. Guilarte

The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-( R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals ( p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-( R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.


Sign in / Sign up

Export Citation Format

Share Document