scholarly journals A comparative study of shear bond strength between metal and ceramic brackets and artificially aged composite restorations using different surface treatments

2011 ◽  
Vol 34 (5) ◽  
pp. 610-617 ◽  
Author(s):  
L. Eslamian ◽  
A. Borzabadi-Farahani ◽  
N. Mousavi ◽  
A. Ghasemi
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Homa Farhadifard ◽  
Loghman Rezaei-Soufi ◽  
Maryam Farhadian ◽  
Parisa Shokouhi

Abstract Background At present, the demand for orthodontic treatment is on the rise. On the other hand, evidence shows that the bond strength of composite resins to old composite restorations is often unreliable. Therefore, the aim of this in vitro study was to assess the effect of different surface treatments on shear bond strength (SBS) of ceramic brackets to old composite restorations. Methods In this in vitro experimental study, 60 nano-hybrid composite discs were fabricated. For aging, the discs were incubated in deionized water at 37 °C for 1 month. Next, they underwent 4 different surface treatments namely acid etching with 37% phosphoric acid, sandblasting, grinding, and Er,Cr:YSGG laser irradiation. Ceramic brackets were then bonded to the discs and underwent SBS testing. Results The maximum mean SBS value was obtained in the grinding group (9.16 ± 2.49 MPa), followed by the sandblasting (8.13 ± 2.58 MPa) and laser (6.57 ± 1.45 MPa) groups. The minimum mean SBS value was noted in the control group (5.07 ± 2.14 MPa). Conclusion All groups except for the control group showed clinically acceptable SBS. Therefore, grinding, sandblasting, and Er,Cr:YSGG laser are suggested as effective surface treatments for bonding of ceramic orthodontic brackets to aged composite.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mustafa Mehmet Özarslan ◽  
Özlem Üstün ◽  
Ulviye Sebnem Buyukkaplan ◽  
Çağatay Barutcigil ◽  
Nurullah Türker ◽  
...  

Adult orthodontics may confront problems related to the bonding performance of orthodontic brackets to new generation restorative materials used for crown or laminate restorations. The aim of the present study was to investigate the shear bond strength of ceramic brackets to two new generation CAD/CAM interpenetrating network composite and nanoceramic composite after different surface treatments. Er,Cr:YSGG Laser, hydrofluoric acid (9%), sandblasting (50 μm Al2O3), and silane were applied to the surfaces of 120 CAD/CAM specimens with 2 mm thickness and then ceramic brackets were bonded to the treated surfaces of the specimens. Bond strength was evaluated using the shear bond strength test. According to the results, CAD/CAM block types and surface treatment methods have significant effects on shear bond strength. The lowest bond strength values were found in the specimens treated with silane (3.35 ± 2.09 MPa) and highest values were found in the specimens treated with sandblast (8.92 ± 2.77 MPa). Sandblasting and hydrofluoric acid surface treatment led to the most durable bonds for the two types of CAD/CAM blocks in the present study. In conclusion, different surface treatments affect the shear bond strength of ceramic brackets to CAD/CAM interpenetrating network composite and nanoceramic composite. Among the evaluated treatments, sandblasting and hydrofluoric acid application resulted in sufficient bonding strength to ceramic brackets for both of the CAD/CAM materials.


2017 ◽  
Vol 18 (12) ◽  
pp. 1181-1184
Author(s):  
Manish Goutam ◽  
Divya Iska ◽  
Madhvi Singh ◽  
Rajkiran Chitumalla ◽  
Sai C Bala Balasubramanian

ABSTRACT Introduction Esthetics is one of the common issues because of which patients consult dental orthodontic treatment. Two ways of tooth bleaching are available these days, which includes in-office bleach and home bleach. Various bleaching protocols are available these days for treating the tooth surfaces. Hence, we planned the present study for investigating the impact of various intracoronal bleaching protocols on shear bond strength of ceramic brackets bonded to tooth surface after bleaching. Materials and methods The present study included assessment of 100 extracted maxillary central incisors with the integrated buccal surface. A resin block was made and individual teeth were embedded in each block. Root canal therapy procedure was performed in all the teeth, after which 2 mm short of tooth apex up to the level of cementoenamel junction, removal of the root canal filling was done. All the samples were broadly divided into four study groups with 25 samples in each group. Bleaching procedure was carried in all the samples intracoronally followed by testing of shear bond strength using universal force testing machine. Following the modified adhesive remnant index (AI), assessment of remaining adhesive on the brackets was done. All the results were compiled and analyzed by Statistical Package for the Social Sciences (SPSS) software version 17.0. Results In the control group, mean shear bond strength was found to be 17.9 MPa. While comparing the carbamide peroxide (CP) group with sodium perborate study group, we observed a statistically significant difference. Nonsignificant results were obtained while comparing the shear bond strength in between sodium perborate group and hydrogen peroxide (HP) group. Conclusion Intracoronal bleaching does affect the shear bond strength of ceramic brackets. Sodium perborate bleaching influences shear bond strength more strongly than other bleaching agents such as CP and HP. Clinical significance In patients undergoing orthodontic treatment, HP is a preferred agent where bleaching has to be followed by orthodontic bonding to the tooth surface. How to cite this article Iska D, Devanna R, Singh M, Chitumalla R, Balasubramanian SCB, Goutam M. In vitro Assessment of Influence of Various Bleaching Protocols on the Strength of Ceramic Orthodontic Brackets bonded to Bleached Tooth Surface: A Comparative Study. J Contemp Dent Pract 2017;18(12): 1181-1184.


2015 ◽  
Vol 26 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Monique Kruger Guarita ◽  
Alexa Helena Köhler Moresca ◽  
Estela Maris Losso ◽  
Alexandre Moro ◽  
Ricardo Cesar Moresca ◽  
...  

The aim of this study was to evaluate the shear bond strength of rebonded ceramic brackets after subjecting the bracket base to different treatments. Seventy-five premolars were selected and randomly distributed into five groups (n=15), according to the type of the bracket surface treatment: I, no treatment, first bonding (control); II, sandblasting with aluminum oxide; III, sandblasting + silane; IV, silica coating + silane; and V, silicatization performed in a laboratory (Rocatec system). The brackets were fixed on an enamel surface with Transbond XT resin without acid etching. The brackets were then removed and their bases were subjected to different treatments. Thereafter, the brackets were fixed again to the enamel surface and the specimens were subjected to shear bond strength (SBS) test. The adhesive remnant index (ARI) was then evaluated for each specimen. Data were subjected to ANOVA and Tukey's tests (α=0.05). A statistically significant difference was observed only between Rocatec and the other groups; the Rocatec group showed the lowest SBS values. The highest SBS values were observed for group 1, without any significant difference from the values for groups II, III and IV. Most groups had a higher percentage of failures at the enamel-resin interface (score 1). It was concluded that the surface treatments of rebonded ceramic brackets were effective, with SBS values similar to that of the control group, except Rocatec group.


2019 ◽  
Vol 1 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Alvaro Della Bona ◽  
Ricardo Kochenborger ◽  
Luís A. Di Guida

<P>Background: Dental resin composites undergo chemical and mechanical degradation. Thus, the orthodontist should evaluate aged composite restoration surfaces to select the appropriate protocol to successfully bond orthodontics accessories. </P><P> Objective: This study evaluated the shear bond strength (&#963;) of metal (M) and ceramic (C) brackets bonded to aged resin-based composite restorations (ACR) after different surface treatments. </P><P> Methods: ACR specimens (N=160) were fabricated and divided into 8 experimental groups (n=20) as follows: Mo (control)- M bonded to ACR; MA- M bonded to ACR after acid etching using 38% phosphoric acid for 20 s (A); MB- M bonded to ACR after surface roughing using a twelve-bladed bur (B); MBA- M bonded to ACR after B and A; Co (control)- C bonded to ACR; CA- C bonded to ACR after A; CB- C bonded to ACR after B; CBA- C bonded to ACR after B and A. All specimens were stored for 24h before σ testing. Data were statistically analyzed using one-way ANOVA and Tukey post-hoc (α=0.05). Fracture surfaces were examined to determine the failure mode. </P><P> Results: The surface treatments (A, B and BA) produced similar σ values (p>0.05) to ACR when using the same bracket type. M bracket showed greater σ than C bracket (p<0.05), probably because of different mechanical retention inherent from bracket type. Inhomogeneous stress distribution generated complex failures. </P><P> Conclusion: Considering the needs of an orthodontic treatment and the surface treatments evaluated, sufficient bond strength was produced to ACR, irrespective of bracket type.</P>


Sign in / Sign up

Export Citation Format

Share Document