scholarly journals Insertion torque, pull-out strength and cortical bone thickness in contact with orthodontic mini-implants at different insertion angles

2013 ◽  
Vol 35 (6) ◽  
pp. 766-771 ◽  
Author(s):  
T. M. Meira ◽  
O. M. Tanaka ◽  
M. M. Ronsani ◽  
I. T. Maruo ◽  
O. Guariza-Filho ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 1183
Author(s):  
Lejla Redžepagić-Vražalica ◽  
Elmedin Mešić ◽  
Nedim Pervan ◽  
Vahidin Hadžiabdić ◽  
Muamer Delić ◽  
...  

This study investigated the correlation between bone characteristics, the design of orthodontic mini-implants, the pull-out force, and primary stability. This experimental in vitro study has examined commercial orthodontic mini-implants of different sizes and designs, produced by two manufacturers: Tomas-pin SD (Dentaurum, Ispringen, Germany) and Perfect Anchor (Hubit, Seoul, Korea). The total number of 40 mini-implants were tested. There are two properties that are common to all tested implants—one is the material of which they are made (titanium alloy Ti-6Al-4V), and the other is the method of their insertion. The main difference between the mini-implants, which is why they have been selected as the subject of research in the first place, is reflected in their geometry or design. Regardless of the type of implant, the average pull-out forces were found to be higher for a cortical bone thickness (CBTC) of 0.62–0.67 mm on average, compared to the CBTC < 0.62 mm, where the measured force averages were found to be lower. The analysis of variance tested the impact of the mini-implant geometry on the pull-out force and proved that there is a statistically significant impact (p < 0.015) of all three analyzed geometric factors on the pull-out force of the implant. The design of the mini-implant affects its primary stability. The design of the mini-implant affects the pulling force. The bone quality at the implant insertion point is important for primary stability; thus, the increase in the cortical bone thickness increases the value of the pulling force significantly.


2015 ◽  
Vol 9 (1) ◽  
pp. 287-291 ◽  
Author(s):  
Masume Johari ◽  
Farzaneh Kaviani ◽  
Arman Saeedi

Introduction : Orthodontic mini-implants have been incorporated into orthodontic treatment modalities. Adequate bone at mini-implant placement site can influence the success or failure of anchorage. The present study was to determine the thickness of cortical bone in the maxillary mid-palatal area at predetermined points for the placement of orthodontic mini-implants using Cone Beam CT technique in order to evaluate the relationship of these values with the facial height. Materials and Methods : A total of 161 patients, consisting of 63 males (39.13%) and 98 females (60.87%), were evaluated in the present study; 38% of the subjects had normal facial height, 29% had short face and 33% had long face. In order to determine which patient belongs to which facial height category, i.e. normal, long or short, two angular and linear evaluations were used: the angle between S-N and Go-Me lines and the S-Go/N-Me ratio. Twenty points were evaluated in all the samples. First the incisive foramen was located. The paracoronal cross-sections were prepared at distances of 4, 8, 16 and 24 mm from the distal wall of the incisive foramen and on each cross-section the mid-sagittal and para-sagittal areas were determined bilaterally at 3- and 6-mm distances (a total of 5 points). The thicknesses of the cortical plate of bone were determined at the predetermined points. Results : There was a significant relationship between the mean cortical bone thickness and facial height (p<0.01), with significantly less thickness in long faces compared to short faces. However, the thickness of cortical bone in normal faces was similar to that in long and short faces. Separate evaluation of the points showed that at point a16 subjects with short faces had thicker cortical bone compared to subjects with long and normal faces. At point b8 in long faces, the thickness of the cortical bone was significantly less than that in short and normal faces. At point d8, the thickness of the cortical bone in subjects with short faces was significantly higher than that in subjects with long faces. Conclusion : At the point a16 the cortical bone thickness in short faces was significantly higher than normal and long faces. The lower thickness of the cortical bone in the palatal area at points b8 and d8 in subjects with long faces might indicate a lower anchorage value of these points in these subjects.


2017 ◽  
Vol 87 (5) ◽  
pp. 745-751 ◽  
Author(s):  
Riccardo Nucera ◽  
Antonino Lo Giudice ◽  
Angela Mirea Bellocchio ◽  
Paola Spinuzza ◽  
Alberto Caprioglio ◽  
...  

ABSTRACT Objective: To analyze the buccal bone thickness, bone depth, and cortical bone depth of the mandibular buccal shelf (MBS) to determine the most suitable sites of the MBS for mini-screw insertion. Materials and Methods: The sample included cone-beam computed tomographic (CBCT) records of 30 adult subjects (mean age 30.9 ± 7.0 years) evaluated retrospectively. All CBCT examinations were performed with the i-CAT CBCT scanner. Each exam was converted into DICOM format and processed with OsiriX Medical Imaging software. Proper view sections of the MBS were obtained for quantitative and qualitative evaluation of bone characteristics. Results: Mesial and distal second molar root scan sections showed enough buccal bone for mini-screw insertion. The evaluation of bone depth was performed at 4 and 6 mm buccally to the cementoenamel junction. The mesial root of the mandibular second molar at 4 and 6 mm showed average bone depths of 18.51 mm and 14.14 mm, respectively. The distal root of the mandibular second molar showed average bone depths of 19.91 mm and 16.5 mm, respectively. All sites showed cortical bone depth thickness greater than 2 mm. Conclusions: Specific sites of the MBS offer enough bone quantity and adequate bone quality for mini-screw insertion. The insertion site with the optimal anatomic characteristics is the buccal bone corresponding to the distal root of second molar, with screw insertion 4 mm buccal to the cementoenamel junction. Considering the cortical bone thickness of optimal insertion sites, pre-drilling is always recommended in order to avoid high insertion torque.


2019 ◽  
Vol 14 (4) ◽  
pp. 383-388
Author(s):  
Chin-Yun Pan ◽  
Pao-Hsin Liu ◽  
Yu-Chuan Tseng ◽  
Szu-Ting Chou ◽  
Chao-Yi Wu ◽  
...  

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Flávio de Mendonça COPELLO ◽  
Daniel Paludo BRUNETTO ◽  
Carlos Nelson ELIAS ◽  
Matheus Melo PITHON ◽  
Raildo Silva COQUEIRO ◽  
...  

ABSTRACT Objective: Assess the influence of mono- and bicortical anchorage and diameter of mini-implants (MIs) on the primary stability of these devices. Methods: 60 self-drilling MIs were distributed in six groups according to diameter (1.5mm, 1.8mm or 2.0mm) and type of anchorage (monocortical and bicortical) in bovine rib. The primary stability was evaluated by insertion torque, micromobility and pull-out strength tests. ANOVA and/or Tukey analysis were used to conduct intergroup comparisons (p< 0.05). Non-parametric statistics (Kruskal-Wallis and Mann-Whitney) were performed when normality was not found (p< 0.05). Results: MIs with larger diameters and bicortical anchorage showed greater primary stability regarding insertion torque (p< 0.05) and micromobility (p< 0.05). Only MI diameter had an effect on the pull-out strength test. Larger diameter MIs presented better retention in pull-out strength tests (p< 0.001), regardless of mono- or bicortical anchorage. Conclusions: MI primary stability is dependent on its diameter and type of anchorage. Bicortical anchorage showed greater stability when compared with monocortical anchorage, independently of other variables.


2007 ◽  
Vol 77 (6) ◽  
pp. 979-985 ◽  
Author(s):  
Young-Youn Song ◽  
Jung-Yul Cha ◽  
Chung-Ju Hwang

Abstract Objective: To evaluate the effect of cortical bone thickness on the maximum insertion and removal torque of different types of self-drilling mini-screws and to determine if torque depends on the screw design. Materials and Methods: Three different types of self-drilling mini-screws (cylindrical type [Cl], taper type [Ta], taper type [Tb]) were inserted with the use of a driving torque tester at a constant speed of 3 rotations per minute. Experimental bone blocks with different cortical bone thicknesses were used as specimens. Results: Differences in the cortical bone thickness had little effect on the maximum insertion and removal torque in Cl. However, with Ta and Tb, the maximum insertion torque increased as the cortical bone thickness increased. The maximum insertion torque of Tb was highest in all situations, followed by Ta and Tb, in that order. Cl showed less torque loss in all cortical bone thicknesses and a longer removal time compared to Ta or Tb. There were significant relationships between cortical bone thickness, maximum insertion and removal torque, and implantation time in each type of self-drilling mini-screw. Conclusion: Since different screw designs showed different insertion torques with increases in cortical bone thickness, the suitable screw design should be selected according to the cortical thickness at the implant site.


2020 ◽  
Vol 25 (6) ◽  
pp. 33-42
Author(s):  
Carolina Carmo de Menezes ◽  
Sérgio Estelita Barros ◽  
Diego Luiz Tonello ◽  
Aron Aliaga-Del Castillo ◽  
Daniela Garib ◽  
...  

ABSTRACT Introduction: Controversial reports suggest a relationship between growth pattern and cortical alveolar bone thickness, and its effect in the use of mini-implants. Objective: The main purpose of this study was to assess the influence of the growth pattern on the cortical alveolar bone thickness and on the stability and success rate of mini-implants. Methods: Fifty-six mini-implants were inserted in the buccal region of the maxilla of 30 patients. These patients were allocated into two groups, based on their growth pattern (horizontal group [HG] and vertical group [VG]). Cortical thickness was measured using Cone Beam Computed Tomography. Stability of mini-implants, soft tissue in the insertion site, sensitivity during loading and plaque around the mini-implants were evaluated once a month. Intergroup comparisons were performed using t tests, Mann-Whitney tests, and Fisher exact tests. Correlations were evaluated with Pearson’s correlation coefficient. Results: The cortical bone thickness was significantly greater in the HG at the maxillary labial anterior region and at the mandibular buccal posterior and labial anterior regions. There was a significant negative correlation between Frankfort-mandibular plane angle (FMA) and the labial cortical thickness of the maxilla, and with the labial and lingual cortical bone thicknesses of the mandible. No significant intergroup difference was found for mini-implant mobility and success rate. No associated factor influenced stability of the mini-implants. Conclusions: Growth pattern affects the alveolar bone cortical thickness in specific areas of the maxilla and mandible, with horizontal patients presenting greater cortical bone thickness. However, this fact may have no influence on the stability and success rate of mini-implants in the maxillary buccal posterior region.


Sign in / Sign up

Export Citation Format

Share Document