The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone

2009 ◽  
Vol 38 (1) ◽  
pp. 13-18 ◽  
Author(s):  
M. Motoyoshi ◽  
M. Inaba ◽  
A. Ono ◽  
S. Ueno ◽  
N. Shimizu
2020 ◽  
Vol 25 (6) ◽  
pp. 33-42
Author(s):  
Carolina Carmo de Menezes ◽  
Sérgio Estelita Barros ◽  
Diego Luiz Tonello ◽  
Aron Aliaga-Del Castillo ◽  
Daniela Garib ◽  
...  

ABSTRACT Introduction: Controversial reports suggest a relationship between growth pattern and cortical alveolar bone thickness, and its effect in the use of mini-implants. Objective: The main purpose of this study was to assess the influence of the growth pattern on the cortical alveolar bone thickness and on the stability and success rate of mini-implants. Methods: Fifty-six mini-implants were inserted in the buccal region of the maxilla of 30 patients. These patients were allocated into two groups, based on their growth pattern (horizontal group [HG] and vertical group [VG]). Cortical thickness was measured using Cone Beam Computed Tomography. Stability of mini-implants, soft tissue in the insertion site, sensitivity during loading and plaque around the mini-implants were evaluated once a month. Intergroup comparisons were performed using t tests, Mann-Whitney tests, and Fisher exact tests. Correlations were evaluated with Pearson’s correlation coefficient. Results: The cortical bone thickness was significantly greater in the HG at the maxillary labial anterior region and at the mandibular buccal posterior and labial anterior regions. There was a significant negative correlation between Frankfort-mandibular plane angle (FMA) and the labial cortical thickness of the maxilla, and with the labial and lingual cortical bone thicknesses of the mandible. No significant intergroup difference was found for mini-implant mobility and success rate. No associated factor influenced stability of the mini-implants. Conclusions: Growth pattern affects the alveolar bone cortical thickness in specific areas of the maxilla and mandible, with horizontal patients presenting greater cortical bone thickness. However, this fact may have no influence on the stability and success rate of mini-implants in the maxillary buccal posterior region.


2015 ◽  
Vol 9 (1) ◽  
pp. 287-291 ◽  
Author(s):  
Masume Johari ◽  
Farzaneh Kaviani ◽  
Arman Saeedi

Introduction : Orthodontic mini-implants have been incorporated into orthodontic treatment modalities. Adequate bone at mini-implant placement site can influence the success or failure of anchorage. The present study was to determine the thickness of cortical bone in the maxillary mid-palatal area at predetermined points for the placement of orthodontic mini-implants using Cone Beam CT technique in order to evaluate the relationship of these values with the facial height. Materials and Methods : A total of 161 patients, consisting of 63 males (39.13%) and 98 females (60.87%), were evaluated in the present study; 38% of the subjects had normal facial height, 29% had short face and 33% had long face. In order to determine which patient belongs to which facial height category, i.e. normal, long or short, two angular and linear evaluations were used: the angle between S-N and Go-Me lines and the S-Go/N-Me ratio. Twenty points were evaluated in all the samples. First the incisive foramen was located. The paracoronal cross-sections were prepared at distances of 4, 8, 16 and 24 mm from the distal wall of the incisive foramen and on each cross-section the mid-sagittal and para-sagittal areas were determined bilaterally at 3- and 6-mm distances (a total of 5 points). The thicknesses of the cortical plate of bone were determined at the predetermined points. Results : There was a significant relationship between the mean cortical bone thickness and facial height (p<0.01), with significantly less thickness in long faces compared to short faces. However, the thickness of cortical bone in normal faces was similar to that in long and short faces. Separate evaluation of the points showed that at point a16 subjects with short faces had thicker cortical bone compared to subjects with long and normal faces. At point b8 in long faces, the thickness of the cortical bone was significantly less than that in short and normal faces. At point d8, the thickness of the cortical bone in subjects with short faces was significantly higher than that in subjects with long faces. Conclusion : At the point a16 the cortical bone thickness in short faces was significantly higher than normal and long faces. The lower thickness of the cortical bone in the palatal area at points b8 and d8 in subjects with long faces might indicate a lower anchorage value of these points in these subjects.


2015 ◽  
Vol 662 ◽  
pp. 151-154
Author(s):  
Dušan Németh ◽  
František Lofaj ◽  
Ján Kučera

The stress distribution in cortical bone and dental implant has been modeled by finite element method (FEM) using linear static analysis in the case of monocortical and bicortical fixation of a real dental implant for three cortical bone thicknesses: 2 mm, 2.5 mm, 4 mm. The analysis revealed that the highest stresses in the cortical bone and in the implant after three-axial loading are localized at the edge of the cortical bone near the implant neck where bending moment is the highest. An increase of the maximum stresses has been observed with the decrease of the intraosseal length of the implant and cortical bone thickness.


2013 ◽  
Vol 35 (6) ◽  
pp. 766-771 ◽  
Author(s):  
T. M. Meira ◽  
O. M. Tanaka ◽  
M. M. Ronsani ◽  
I. T. Maruo ◽  
O. Guariza-Filho ◽  
...  

2019 ◽  
Vol 14 (4) ◽  
pp. 383-388
Author(s):  
Chin-Yun Pan ◽  
Pao-Hsin Liu ◽  
Yu-Chuan Tseng ◽  
Szu-Ting Chou ◽  
Chao-Yi Wu ◽  
...  

2011 ◽  
Vol 81 (5) ◽  
pp. 760-766 ◽  
Author(s):  
Xing Wei ◽  
Lixing Zhao ◽  
Zhenrui Xu ◽  
Tian Tang ◽  
Zhihe Zhao

Abstract Objective: To compare the effects of different cortical bone thicknesses on the stability of microscrews at different healing times. Materials: Sixty-four microscrews were inserted into the femurs of eight beagles, with four microscrews for one femur of one beagle dog. The dogs were sacrificed at 0, 3, 6, and 9 weeks after microscrew placement, respectively. All specimens were prepared for pullout testing. Cortical bone thickness was measured. Statistical analyses were conducted with analysis of variance (ANOVA) and Student-Neuman-Keuls (SNK) tests. Results: Pullout forces in thick cortical bone sites are significantly higher than those in thin sites at 0 week and 3 weeks. For both thick and thin cortical bone thickness sites, the highest pullout forces were seen in the 0 week group and the lowest in the 3 week group. In the thin cortical bone thickness sites, the pullout force of the 3 week group was statistically different from those of the 6 week group and the 9 week group; however, no such differences were noted in thick cortical bone thickness sites. Conclusion: Microscrews inserted into thick cortical bone thickness sites had better stability than those inserted into thin cortical bone thickness sites at early healing time. The difference diminished and became insignificant as healing time got longer. Longer healing time may be necessary if microscrews are inserted into thin cortical bone thickness sites.


2021 ◽  
Vol 11 (3) ◽  
pp. 1183
Author(s):  
Lejla Redžepagić-Vražalica ◽  
Elmedin Mešić ◽  
Nedim Pervan ◽  
Vahidin Hadžiabdić ◽  
Muamer Delić ◽  
...  

This study investigated the correlation between bone characteristics, the design of orthodontic mini-implants, the pull-out force, and primary stability. This experimental in vitro study has examined commercial orthodontic mini-implants of different sizes and designs, produced by two manufacturers: Tomas-pin SD (Dentaurum, Ispringen, Germany) and Perfect Anchor (Hubit, Seoul, Korea). The total number of 40 mini-implants were tested. There are two properties that are common to all tested implants—one is the material of which they are made (titanium alloy Ti-6Al-4V), and the other is the method of their insertion. The main difference between the mini-implants, which is why they have been selected as the subject of research in the first place, is reflected in their geometry or design. Regardless of the type of implant, the average pull-out forces were found to be higher for a cortical bone thickness (CBTC) of 0.62–0.67 mm on average, compared to the CBTC < 0.62 mm, where the measured force averages were found to be lower. The analysis of variance tested the impact of the mini-implant geometry on the pull-out force and proved that there is a statistically significant impact (p < 0.015) of all three analyzed geometric factors on the pull-out force of the implant. The design of the mini-implant affects its primary stability. The design of the mini-implant affects the pulling force. The bone quality at the implant insertion point is important for primary stability; thus, the increase in the cortical bone thickness increases the value of the pulling force significantly.


Sign in / Sign up

Export Citation Format

Share Document