Nation Building. A Long-Term Perspective and Global Analysis

2014 ◽  
Vol 31 (1) ◽  
pp. 30-47 ◽  
Author(s):  
Andreas Wimmer
2021 ◽  
Vol 13 (4) ◽  
pp. 2347 ◽  
Author(s):  
Denielle Perry ◽  
Ian Harrison ◽  
Stephannie Fernandes ◽  
Sarah Burnham ◽  
Alana Nichols

Freshwater ecosystems are poorly represented in global networks of protected areas. This situation underscores an urgent need for the creation, application, and expansion of durable (long-term and enforceable) protection mechanisms for free-flowing rivers that go beyond conventional protected area planning. To address this need, we must first understand where and what types of protections exist that explicitly maintain the free-flowing integrity of rivers, as well as the efficacy of such policy types. Through policy analysis and an in-depth literature review, our study identifies three main policy mechanisms used for such protections: (1) River Conservation Systems; (2) Executive Decrees and Laws; and (3) Rights of Rivers. We found that globally only eight counties have national river conservation systems while seven countries have used executive decrees and similar policies to halt dam construction, and Rights of Rivers movements are quickly growing in importance, relative to other protection types. Despite the current extent of protection policies being insufficient to tackle the freshwater and biodiversity crises facing the world’s rivers, they do provide useful frameworks to guide the creation and expansion of protections. Ultimately, as countries act on global calls for protections, policy mechanisms must be tailored to their individual social and ecological geographies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rachel M. Pilla ◽  
Craig E. Williamson ◽  
Boris V. Adamovich ◽  
Rita Adrian ◽  
Orlane Anneville ◽  
...  

AbstractGlobally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.


2020 ◽  
Vol 45 (5) ◽  
pp. 484-495
Author(s):  
LL Miotti ◽  
AC Follak ◽  
AF Montagner ◽  
RT Pozzobon ◽  
BL da Silveira ◽  
...  

Clinical Relevance Conventional multistep resin cements presented higher adhesive performance to dentin than simplified self-adhesive cements, which is an important criterion for indirect restoration prognosis. SUMMARY This study aimed to conduct a systematic review of the literature on laboratory studies assessing bonding performance to dentin of conventional and self-adhesive resin cements, in cementing indirect restorations. This review was reported according to the PRISMA Statement. Of a total of 518 studies, 36 were screened full text and reviewed according to exclusion criteria. Nineteen papers were included in the systematic review and meta-analyses, according to the following inclusion criteria: studies that evaluated the bond strength to dentin of indirect restorations cemented with dual conventional or self-adhesive resin cements and those that presented bond strength data in MPa as an outcome. Statistical analyses were conducted using Rev-Man 5.1. Comparisons were performed with random effects models at 5% significance level. A global analysis comparing conventional and self-adhesive cements and three subgroup analyses comparing immediate and long-term results were performed. Global analysis showed a difference between groups, with conventional resin cements presenting higher bond strength results than self-adhesive resin cements, in immediate and long-term time periods (both p=0.03). Immediate and longterm bond strength results were different for self-adhesive cements, favoring immediate bond strength (p=0.03), but immediate and long-term bond strength results for conventional resin cements were not different (p=0.06). Medium or high risk of bias was found in all studies. Conventional multistep resin cements showed superior overall adhesive performance compared with simplified self-adhesive resin cements when used to cement indirect restorations to dentin.


2020 ◽  
Vol 12 (8) ◽  
pp. 3227 ◽  
Author(s):  
Anjar Dimara Sakti ◽  
Wataru Takeuchi

It is necessary to develop a sustainable food production system to ensure future food security around the globe. Cropping intensity and sowing month are two essential parameters for analyzing the food–water–climate tradeoff as food sustainability indicators. This study presents a global-scale analysis of cropping intensity and sowing month from 2000 to 2015, divided into three groups of years. The study methodology integrates the satellite-derived normalized vegetation index (NDVI) of 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) and daily land-surface-water coverage (LSWC) data obtained from The Advanced Microwave Scanning Radiometer (AMSR-E/2) in 1-km aggregate pixel resolution. A fast Fourier transform was applied to normalize the MODIS NDVI time-series data. By using advanced methods with intensive optic and microwave time-series data, this study set out to anticipate potential dynamic changes in global cropland activity over 15 years representing the Millennium Development Goal period. These products are the first global datasets that provide information on crop activities in 15-year data derived from optic and microwave satellite data. The results show that in 2000–2005, the total global double-crop intensity was 7.1 million km2, which increased to 8.3 million km2 in 2006–2010, and then to approximately 8.6 million km2 in 2011–2015. In the same periods, global triple-crop agriculture showed a rapid positive growth from 0.73 to 1.12 and then 1.28 million km2, respectively. The results show that Asia dominated double- and triple-crop growth, while showcasing the expansion of single-cropping area in Africa. The finer spatial resolution, combined with a long-term global analysis, means that this methodology has the potential to be applied in several sustainability studies, from global- to local-level perspectives.


Sign in / Sign up

Export Citation Format

Share Document