P1592A cardioprotective effect of dietary nitrate mediated by red blood cells

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Jiao ◽  
J N Yang ◽  
M Sundqvist ◽  
Y Tratsiakovich ◽  
M L Hellenius ◽  
...  

Abstract Background Reduced bioavailability of nitric oxide (NO) is a key factor behind coronary artery disease and ischemic heart disease. Besides being produced from L-arginine by NO synthase, reduction of nitrate/nitrite to NO is also an important pathway for NO generation, especially during hypoxic/ischemic conditions. Existing evidences suggest that dietary nitrate improves endothelial function and ischemic tolerance via a NO-dependent mechanism. Recent data indicate that red blood cells (RBCs) are an important source of NO bioactivity that protects the heart from ischemia-reperfusion injury. It is unknown whether dietary nitrate exerts cardioprotection by increasing export of RBC NO bioactivity. Purpose To investigate whether dietary nitrate protects the heart against ischemia-reperfusion injury via a mechanism mediated by RBCs. Methods Patients with mild hypertension (systolic blood pressure >130, ≤159 mmHg) were randomly assigned to three groups after a 2-week run-in period on a diet low in nitrate: group 1 received nitrate-rich vegetables (green leafy, ∼150 g/day) plus capsules with placebo salt (KCl), group 2 received low nitrate vegetables (cherry tomato, sweet corn, capsicum, carrot, ∼150 g/day) and capsules with nitrate salt (KNO3, 300mg) and group 3 received low nitrate vegetables and placebo capsules for 5 weeks. The nitrate content of the pills and nitrate-rich vegetables were precisely matched. As a pre-specified substudy, RBCs were collected blindly from 48 subjects before (baseline) and after the 5-week treatment (follow-up). The RBCs were given to isolated Langendorff-perfused rat hearts at the onset of ischemia with and without the soluble guanylyl cyclase (sGC) inhibitor (1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one, ODQ). The hearts were subjected to 25 min global ischemia following 60 min reperfusion. Left ventricular developed pressure (LVDP) was recorded as an indicator of cardiac function. Results The recovery in LVDP during reperfusion following global ischemia in hearts given RBCs collected at baseline was similar in the three groups (Fig. A). Of note, post-ischemic recovery of LVDP was significantly improved by administration of RBCs from patients randomized to high nitrate vegetables or nitrate capsule compared to the group randomized to low nitrate and placebo (Fig. B). There was no difference in LVDP recovery between the groups receiving high nitrate vegetables or nitrate capsule (Fig. B). The nitrate-induced improvement in post-ischemic cardiac recovery was totally abolished by the sGC inhibitor ODQ (Fig. C), indicating that the protective effect induced by RBCs from subjects given nitrate is NO-sGC dependent. Conclusion Dietary nitrate in the form of leafy vegetables induces protection against myocardial ischemia-reperfusion injury via a mechanism involving the NO-sGC signaling pathway in RBCs.

2016 ◽  
Vol 31 (2) ◽  
pp. 761-770 ◽  
Author(s):  
Ronald Carnemolla ◽  
Carlos H. Villa ◽  
Colin F. Greineder ◽  
Sergei Zaitsev ◽  
Kruti R. Patel ◽  
...  

2021 ◽  
Vol 10 (13) ◽  
pp. 2968
Author(s):  
Alessandro Bellis ◽  
Giuseppe Di Gioia ◽  
Ciro Mauro ◽  
Costantino Mancusi ◽  
Emanuele Barbato ◽  
...  

The significant reduction in ‘ischemic time’ through capillary diffusion of primary percutaneous intervention (pPCI) has rendered myocardial-ischemia reperfusion injury (MIRI) prevention a major issue in order to improve the prognosis of ST elevation myocardial infarction (STEMI) patients. In fact, while the ischemic damage increases with the severity and the duration of blood flow reduction, reperfusion injury reaches its maximum with a moderate amount of ischemic injury. MIRI leads to the development of post-STEMI left ventricular remodeling (post-STEMI LVR), thereby increasing the risk of arrhythmias and heart failure. Single pharmacological and mechanical interventions have shown some benefits, but have not satisfactorily reduced mortality. Therefore, a multitarget therapeutic strategy is needed, but no univocal indications have come from the clinical trials performed so far. On the basis of the results of the consistent clinical studies analyzed in this review, we try to design a randomized clinical trial aimed at evaluating the effects of a reasoned multitarget therapeutic strategy on the prevention of post-STEMI LVR. In fact, we believe that the correct timing of pharmacological and mechanical intervention application, according to their specific ability to interfere with survival pathways, may significantly reduce the incidence of post-STEMI LVR and thus improve patient prognosis.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Zuo ◽  
R Tian ◽  
Q Chen ◽  
L Wang ◽  
Q Gu ◽  
...  

Abstract Background Myocardial ischemia-reperfusion injury (MIRI) is one of the leading causes of human death. Nod-like receptor protein-3 (NLRP3) inflammasome signaling pathway involved in the pathogenesis of MIRI. However, the upstream regulating mechanisms of NLRP3 at molecular level remains unknown. Purpose This study investigated the role of microRNA330-5p (miR-330-5p) in NLRP3 inflammasome-mediated MIRI and the associated mechanism. Methods Mice underwent 45 min occlusion of the left anterior descending coronary artery followed by different times of reperfusion. Myocardial miR-330-5p expression was examined by quantitative polymerase chain reaction (PCR), and miR-330-5p antagomir and agomir were used to regulate miR-330-5p expression. To evaluate the role of miR-330-5p in MIRI, Evans Blue (EB)/2, 3, 5-triphenyltetrazolium chloride (TTC) staining, echocardiography, and immunoblotting were used to assess infarct volume, cardiac function, and NLRP3 inflammasome activation, respectively. Further, in vitro myocardial ischemia-reperfusion model was established in cardiomyocytes (H9C2 cell line). A luciferase binding assay was used to examine whether miR-330-5p directly bound to T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM3). Finally, the role of miR-330-5p/TIM3 axis in regulating apoptosis and NLRP3 inflammasome formation were evaluated using flow cytometry assay and immunofluorescence staining. Results Compared to the model group, inhibiting miR-330-5p significantly aggravated MIRI resulting in increased infarct volume (58.09±6.39% vs. 37.82±8.86%, P<0.01) and more severe cardiac dysfunction (left ventricular ejection fraction [LVEF] 12.77%±6.07% vs. 27.44%±4.47%, P<0.01; left ventricular end-diastolic volume [LVEDV] 147.18±25.82 vs. 101.31±33.20, P<0.05; left ventricular end-systolic volume [LVESV] 129.11±30.17 vs. 74.29±28.54, P<0.05). Moreover, inhibiting miR-330-5p significantly increased the levels of NLRP3 inflammasome related proteins including caspase-1 (0.80±0.083 vs. 0.60±0.062, P<0.05), interleukin (IL)-1β (0.87±0.053 vs. 0.79±0.083, P<0.05), IL-18 (0.52±0.063 vs. 0.49±0.098, P<0.05) and tissue necrosis factor (TNF)-α (1.47±0.17 vs. 1.03±0.11, P<0.05). Furthermore, TIM3 was confirmed as a potential target of miR-330-5p. As predicted, suppression of TIM3 by small interfering RNA (siRNA) ameliorated the anti-miR-330-5p-mediated apoptosis of cardiomyocytes and activation of NLRP3 inflammasome signaling pathway (Figure 1). Conclusion Overall, our study indicated that miR-330-5p/TIM3 axis involved in the regulating mechanism of NLRP3 inflammasome-mediated myocardial ischemia-reperfusion injury. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China Grants


Author(s):  
Anita A. Mehta ◽  
Purav Patel ◽  
Vandana R. Thakur ◽  
Jayesh V. Beladiya

This study was designed to assess the effect of soya phosphatidylcholine (SPC) against ischemia/reperfusion (I/R) injury and the possible underlying mechanism using experimental and computational studies. I/R injury was induced by global ischemia for 30 min followed by reperfusion for 120 min. The perfusion of the SPC was performed for 10 min before inducing global ischemia. In the mechanistic study, the involvement of specific cellular pathways was identified using various inhibitors such as ATP-dependent potassium channel (KATP) inhibitor (glibenclamide), protein kinase C (PKC) inhibitor (chelerythrine), non-selective nitric oxide synthase inhibitor (L-NAME), and endothelium remover (Triton X-100). The computational study of various ligands was performed on toll-like receptor 4 (TLR4) protein using AutoDock version 4.0. SPC (100 μM) significantly decreased the levels of cardiac damage markers and %infarction compared with the vehicle control (VC). Furthermore, cardiodynamics (indices of left ventricular contraction (dp/dtmax), indices of left ventricular relaxation (dp/dtmin), coronary flow, and antioxidant enzyme levels were significantly improved as compared with VC. This protective effect was attenuated by glibenclamide, chelerythrine, and Triton X-100, but it was not attenuated by L-NAME. The computational study showed a significant bonding affinity of SPC to the TLR4-MD2 complex. Thus, SPC reduced myocardial I/R injury in isolated perfused rat hearts, which might be governed by the KATP channel, PKC, endothelium response, and TLR4-MyD88 signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenyu Fan ◽  
Liangliang Cai ◽  
Shengnan Wang ◽  
Jing Wang ◽  
Bohua Chen

Baicalin is a natural flavonoid glycoside that confers protection against myocardial ischemia/reperfusion (I/R) injury. However, its mechanism has not been fully understood. This study focused on elucidating the role of ferroptosis in baicalin-generated protective effects on myocardial ischemia/reperfusion (I/R) injury by using the myocardial I/R rat model and oxygen–glucose deprivation/reoxygenation (OGD/R) H9c2 cells. Our results show that baicalin improved myocardial I/R challenge–induced ST segment elevation, coronary flow (CF), left ventricular systolic pressure , infarct area, and pathological changes and prevented OGD/R-triggered cell viability loss. In addition, enhanced lipid peroxidation and significant iron accumulation along with activated transferrin receptor protein 1 (TfR1) signal and nuclear receptor coactivator 4 (NCOA4)-medicated ferritinophagy were observed in in vivo and in vitro models, which were reversed by baicalin treatment. Furthermore, acyl-CoA synthetase long-chain family member 4 (ACSL4) overexpression compromised baicalin-generated protective effect in H9c2 cells. Taken together, our findings suggest that baicalin prevents against myocardial ischemia/reperfusion injury via suppressing ACSL4-controlled ferroptosis. This study provides a novel target for the prevention of myocardial ischemia/reperfusion injury.


1996 ◽  
Vol 270 (4) ◽  
pp. H1165-H1171 ◽  
Author(s):  
J. G. Kingma ◽  
D. Simard ◽  
J. R. Rouleau ◽  
R. M. Tanguay ◽  
R. W. Currie

Hyperthermia-induced cardioprotection during myocardial ischemia may involve increased activity of antioxidative enzymes. In this study we investigated the effects of 3-amino-1,2,4-triazole (3-AT), an irreversible catalase inhibitor, in heat-shocked (HS) rabbits subjected to ischemia-reperfusion injury. Rabbits underwent whole body hyperthermia at 42 degrees C for 15 min. Twenty-four hours later, rabbits were administered either saline vehicle or 3-AT (1 or 2 g/kg i.p.) 30 min before undergoing 30 min of regional coronary occlusion and 3 h reperfusion. Controls did not undergo whole body hyperthermia and were given either saline or 3-AT. Heart rate and left ventricular pressure were recorded continuously during these experiments. Infarct area (tetrazolium staining) was normalized to anatomic risk zone size (microsphere autoradiography). Expression of HSP 71 was verified using Western blot analysis; myocardial catalase activity was determined in tissue biopsies. Infarct size was significantly reduced in HS rabbits (25.1 +/- 2.8%, P = 0.2; means +/- SE) compared with controls (53.6 +/- 4.7%). Treatment with 1 g/kg 3-AT attenuated HS-mediated cardioprotection (36.9 +/- 4.9%, P = 0.063 vs. HS); protection was abolished with 2 g/kg 3-AT (48.9 +/- 6.6%). Myocardial catalase activities were higher in tissue biopsies from HS rabbits (47.0 +/- 4.5 U/mg protein, P < or = 0.02) compared with controls (33.4 +/- 1.9 U/mg protein); catalase activities were significantly reduced in rabbits treated with 3-AT. In conclusion, whole body hyperthermia increases expression levels of HSP 71; myocardial catalase activity is also significantly increased. Myocardial protection is HS rabbits subjected to ischemia-reperfusion injury was reversed with 3-AT. These data suggest that increased intracellular activities of catalase and possibly other antioxidant enzymes is an important mechanism for hyperthermia-mediated cellular protection.


Sign in / Sign up

Export Citation Format

Share Document