Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Tong-Pu Li ◽  
Si-Si Zha ◽  
Chun-Ying Zhou ◽  
Jun-Tao Gong ◽  
Yu-Xi Zhu ◽  
...  

ABSTRACT Symbiotic microorganisms in invertebrates play vital roles in host ecology and evolution. Cardinium, a common intracellular symbiont, is transinfected into the important agricultural pest Nilaparvata lugens (rice brown planthopper) to regulate its reproduction, but how this impacts its microbial community is unknown. Here, we characterized the bacterial microbiota from N. lugens, with or without Cardinium, at different developmental stages and in various adult tissues using 16S ribosomal ribonucleic acid (16S rRNA) gene sequencing. Upon infection with Cardinium, we found that microbial diversity in the different developmental stages of N. lugens (especially females), and in female midguts and male testes, was lower than that in the uninfected control. There was a negative correlation between Cardinium and most related genera and between Bacteroidetes and Proteobacteria. Although the microbial structure varied during Cardinium infection, Acinetobacter spp. were a core microbiome genus. The Cardinium infection enhanced the relative density of midgut-associated Acinetobacter spp., with both bacteria exhibiting tissue-specific tropism. In addition, this infection caused the changes of main microbial functions in N. lugens. These results offer insights into the effects of alien (i.e. newly introduced from other organism) Cardinium infection on N. lugens-associated microbiotas, aiding in the development of transinfected endosymbionts for pest control.

2019 ◽  
Author(s):  
Sathish Paramasivan ◽  
Ahmed Bassiouni ◽  
Arron Shiffer ◽  
Matthew R Dillon ◽  
Emily K Cope ◽  
...  

ABSTRACTThe sinonasal microbiome remains poorly defined, with our current knowledge based on a few cohort studies whose findings are inconsistent. Furthermore, the variability of the sinus microbiome across geographical divides remains unexplored. We characterise the sinonasal microbiome and its geographical variations in both health and disease using 16S rRNA gene sequencing of 410 individuals from across the world. Although the sinus microbial ecology is highly variable between individuals, we identify a core microbiome comprised of Corynebacterium, Staphylococcus, Streptococcus, Haemophilus, and Moraxella species in both healthy and chronic rhinosinusitis (CRS) cohorts. Corynebacterium (mean relative abundance = 44.02%) and Staphylococcus (mean relative abundance = 27.34%) appear particularly dominant in the majority of patients sampled. There was a significant variation in microbial diversity between countries (p = 0.001). Amongst patients suffering from CRS with nasal polyps, a significant depletion of Corynebacterium (40.29% vs 50.43%; p = 0.02) and over-representation of Streptococcus (7.21% vs 2.73%; p = 0.032) was identified. The delineation of the sinonasal microbiome and standardised methodology described within our study will enable further characterisation and translational application of the sinus microbiota.


2019 ◽  
Author(s):  
Federica Caradonia ◽  
Domenico Ronga ◽  
Marcello Catellani ◽  
Cleber Vinícius Giaretta Azevedo ◽  
Rodrigo Alegria Terrazas ◽  
...  

ABSTRACTThe microbial communities thriving at the root-soil interface have the potential to improve plant growth and sustainable crop production. Yet, how agricultural practices, such as the application of either mineral or organic nitrogen fertilisers, impact on the composition and functions of these communities remains to be fully elucidated. By deploying a two-pronged 16S rRNA gene sequencing and predictive metagenomics approach we demonstrated that the bacterial microbiota of field-grown tomato (Solanum lycopersicum) plants is the product of a selective process that progressively differentiates between rhizosphere and root microhabitats. This process initiates as early as plants are in a nursery stage and it is then more marked at late developmental stages, in particular at harvest. This selection acts on both the bacterial relative abundances and phylogenetic assignments, with a bias for the enrichment of members of the phylum Actinobacteria in the root compartment. Digestate-based and mineral-based nitrogen fertilisers trigger a distinct bacterial enrichment in both rhizosphere and root microhabitats. This compositional diversification mirrors a predicted functional diversification of the root-inhabiting communities, manifested predominantly by the differential enrichment of genes associated to ABC transporters and the two-component system. Together, our data suggest that the microbiota thriving at the tomato root-soil interface is modulated by and in responses to the type of nitrogen fertiliser applied to the field.


2019 ◽  
Vol 3 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Federica Caradonia ◽  
Domenico Ronga ◽  
Marcello Catellani ◽  
Cleber Vinícius Giaretta Azevedo ◽  
Rodrigo Alegria Terrazas ◽  
...  

The microbial communities thriving at the root−soil interface have the potential to improve plant growth and sustainable crop production. Yet, how agricultural practices, such as the application of either mineral or organic nitrogen fertilizers, impact on the composition and functions of these communities remains to be fully elucidated. By deploying a two-pronged 16S rRNA gene sequencing and predictive metagenomics approach, we demonstrated that the bacterial microbiota of field-grown tomato (Solanum lycopersicum) plants is the product of a selective process that progressively differentiates between rhizosphere and root microhabitats. This process initiates as early as plants are in a nursery stage and it is then more marked at late developmental stages, in particular at harvest. This selection acts on both the bacterial relative abundances and phylogenetic assignments, with a bias for the enrichment of members of the phylum Actinobacteria in the root compartment. Digestate-based and mineral-based nitrogen fertilizers trigger a distinct bacterial enrichment in both rhizosphere and root microhabitats. This compositional diversification mirrors a predicted functional diversification of the root-inhabiting communities, manifested predominantly by the differential enrichment of genes associated to ABC transporters and the two-component system. Together, our data suggest that the microbiota thriving at the tomato root−soil interface is modulated by and in responses to the type of nitrogen fertilizer applied to the field. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2020 ◽  
Author(s):  
Daniela Vargas-Robles ◽  
Carolina Gonzalez-Cedillo ◽  
Apolinar M. Hernandez ◽  
Luis D. Alcaraz ◽  
Mariana Peimbert

AbstractInteraction between hands and the environment permits the interchange of microorganisms. The Mexico City subway is used daily by millions of passengers that get in contact with its surfaces. In this study, we used 16S rRNA gene sequencing to characterize the microbiomes of frequently touched surfaces, also comparing regular and women-only wagons. We also explored the effect of surface cleaning on microbial resettling. Finally, we studied passenger behavior and characterized microbial changes after traveling.Most passengers (99%), showed some type of surface interaction during a wagon trip, mostly with the hands (92%). We found microbiome differences associated with surfaces, probably reflecting diverse surface materials and usage frequency. The platform floor was the most bacterial diverse surface, while the stair handrail and pole were the least diverse ones. After pole cleaning, the resettling of microbial diversity was fast (5-30 minutes); however, it did not resemble the initial composition.After traveling, passengers significantly increased their hand microbial diversity and converged to a similar microbial composition among passengers. Additionally, passenger hand microbiomes resembled subway surfaces in diversity and also in the frequency of potentially pathogenic taxa. However, microbial fingerprints were preserved within passengers after traveling.


2021 ◽  
Author(s):  
Ryan Mrofchak ◽  
Christopher Madden ◽  
Morgan V Evans ◽  
William C Kisseberth ◽  
Deepika Dhawan ◽  
...  

Introduction: Urothelial carcinoma (UC) is the tenth most diagnosed cancer in humans worldwide. Dogs are a robust model for invasive UC as tumor development and progression is similar in humans and dogs. Recent studies on urine microbiota in humans revealed alterations in microbial diversity and composition in individuals with UC; however, the potential role of microbiota in UC has yet to be elucidated. Dogs could be valuable models for this research, but microbial alterations in dogs with UC have not been evaluated. Objective: The objective of this this pilot study was to compare the urine and fecal microbiota of dogs with UC (n = 7) and age-, sex-, and breed-matched healthy controls (n = 7). Methods: DNA was extracted from mid-stream free-catch urine and fecal samples using Qiagen Bacteremia and PowerFecal kits, respectively. 16S rRNA gene sequencing was performed followed by sequence processing and analyses (QIIME 2 and R). Results: Canine urine and fecal samples were dominated by taxa similar to those found in humans. Significantly decreased microbial diversity (Kruskal-Wallis: Shannon, p = 0.048) and altered bacterial composition were observed in the urine but not feces of dogs with UC (PERMANOVA: Unweighted UniFrac, p = 0.011). The relative abundances of Fusobacterium was also increased, although not significantly, in the urine and feces of dogs with UC. Conclusion: This study characterizes urine and fecal microbiota in dogs with UC, and it provides a foundation for future work exploring host-microbe dynamics in UC carcinogenesis, prognosis, and treatment.


2011 ◽  
Vol 68 (2) ◽  
pp. 94-97 ◽  
Author(s):  
A.J. Mccarron ◽  
J. Xu ◽  
C. Armstrong ◽  
G. Glynn ◽  
B. C. Millar ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 215265671878951 ◽  
Author(s):  
Vijay R. Ramakrishnan ◽  
Justin Holt ◽  
Leah F. Nelson ◽  
Diana Ir ◽  
Charles E. Robertson ◽  
...  

Introduction A role for bacteria and other microbes has long been suspected in the chronic inflammatory sinonasal diseases. Recent studies utilizing culture-independent, sequence-based identification have demonstrated aberrant shifts in the sinus microbiota of chronic rhinosinusitis subjects, compared with ostensibly healthy controls. Examining how such microbiota shifts occur and the potential for physician-prescribed interventions to influence microbiota dynamics are the topics of the current article. Methods The nasal cavity microbiota of 5 subjects was serially examined over an 8-week period using pan-bacterial 16S rRNA gene sequencing. Four of the subjects were administered topical mometasone furoate spray, while 1 subject underwent a mupirocin decolonization procedure in anticipation of orthopedic surgery. Results Measures of microbial diversity were unaffected by intranasal treatment in 2 patients and were markedly increased in the remaining 3. The increase in microbial diversity was related to clearance of Moraxella spp. and a simultaneous increase in members of the phylum Actinobacteria. Both effects persisted at least 2 weeks beyond cessation of treatment. Transient changes in the relative abundance of several bacterial genera, including Staphylococcus and Priopionibacteria, were also observed during treatment. Conclusions The effects of intranasal steroids on the sinonasal microbiome are poorly understood, despite their widespread use in treating chronic sinonasal inflammatory disorders. In this longitudinal study, administration of intranasal mometasone furoate or mupirocin resulted in shifts in microbial diversity that persisted to some degree following treatment cessation. Further characterization of these effects as well as elucidation of the mechanism(s) underlying these changes is needed.


2018 ◽  
Author(s):  
Elin Videvall ◽  
Se Jin Song ◽  
Hanna M. Bensch ◽  
Maria Strandh ◽  
Anel Engelbrecht ◽  
...  

AbstractThe development of gut microbiota during ontogeny in vertebrates is emerging as an important process influencing physiology, immune system, health, and adult fitness. However, we have little knowledge of how the gut microbiome is colonised and develops in non-model organisms, and to what extent microbial diversity and specific taxa influence changes in fitness-related traits. Here, we used 16S rRNA gene sequencing to describe the successional development of the faecal microbiota in juvenile ostriches (Struthio camelus; n = 71) over their first three months of life, during which time a five-fold difference in weight was observed. We found a gradual increase in microbial diversity with age, an overall convergence in community composition among individuals, multiple colonisation and extinction events, and major taxonomic shifts coinciding with the cessation of yolk absorption. In addition, we discovered significant but complex associations between juvenile growth and microbial diversity, and identified distinct bacterial groups that had positive (Bacteroidaceae) and negative (Enterobacteriaceae, Enterococcaceae, Lactobacillaceae) correlations with the growth of individuals at specific ages. These results have broad implications for our understanding of the development of gut microbiota and its association with juvenile growth.


Sign in / Sign up

Export Citation Format

Share Document