scholarly journals Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs

Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

Abstract Composts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, for in vitro antifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters in Arabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genus Bacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth of Arabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect on Arabidopsis and tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect on Arabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn't affect Arabidopsis growth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.

2018 ◽  
Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A. Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

AbstractComposts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, forin vitroantifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters inArabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genusBacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth ofArabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect onArabidopsisand tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect onArabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn’t affectArabidopsisgrowth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


2021 ◽  
Vol 58 (04) ◽  
pp. 1263-1275
Author(s):  
Rashid Iqbal Khan

Plant extracts (PE’s) has emerged as a safer alternative to manage the fungal pathogens affecting tomato productivity. The current study aimed to evaluate the antimicrobial potential of methanolic fenugreek extract against Alternaria solani, a causal agent of early blight disease in tomato. Fenugreek extract was used at different concentrations of 5%, 10%, 15%, 20% and 25% under in vitro conditions. Results concluded that 25% fenugreek extract significantly reduced the radial growth (2.5 cm) of A. solani under in vitro conditions. Based on in vitro results, three concentrations (5%, 15% and 25%) of fenugreek extract was examined under greenhouse and field conditions. The outcomes expressed that 5% fenugreek extract reduced the disease severity up to 30.19% under greenhouse conditions and up to 40.53% under field trials. Although, application of fenugreek extract had exhibited non-significant impact on vegetative and reproductive growth parameters. However, its application had proved better results as compared to those plants which are infected with A. solani but received zero application of fenugreek extract. Furthermore, the effectiveness of plant extracts was evaluated by variant photosynthetic, antioxidative, polyphenolic and hypersensitive response of A. solani affected tomato plants. The 25% fenugreek extract application had augmented the chlorophyll pigments along with the significant increment of superoxide dismutase (174.16 U mg-1 protein), peroxidase (7.61 µmol min-1 g-1 protein) and catalase activity (4.73 nmol min-1 g-1 protein). Similar outcomes were observed regarding phenolic compounds, where 5% fenugreek extract application had enhanced flavonoid levels (26.62 mg QuE g-1), tannins (1.28 mg TE g-1 extract) and total phenolic contents (2.39 mg GAE g-1) in tomato leaves demonstrating its protective effect against early blight. In dose response, 25% fenugreek extract was most effective in reducing lipid peroxidation and enhancing H2O2 levels. The outcomes of study exhibited the fenugreek extract as an effective strategy to be used against A. solani to control early blight infection in tomato plants. Thus, it can serve as suitable fungicide alternative for resource-poor agriculture areas mainly in developing countries.


Author(s):  
Luciana Thaís Rangel Souza ◽  
Cecília Correia Costa ◽  
Mateus Cardoso Oliveira ◽  
Isabel Celeste Caires Pereira Gusmão

Aim: to evaluate the in vitro action of thymol and carvacrol against the yeasts of Candida albicans ATCC10231 and Candida krusei ATCC34135. Method: A laboratory study was performed to evaluate antifungal activity. The characterization of the Minimal Inhibitory Concentration (MIC) of the thymol essential oil was carried out using the technique where the microdilution is performed, in which a plate containing 96 wells is used. The determination of the Minimum Fungicidal Concentration (MFC) was performed by dripping 10 μL of each of the concentrations evaluated on Sabouraud agar plates. Results: The MIC of thymol and carvacrol for C. albicans was 40 μg/mL and for Candida krusei it did not present antifungal activity. While the MIC of nystatin was 0.03mg for both species with thymol and carvacrol. Conclusion: Thymol presented satisfactory antifungal activity against the pathogens studied, but carvacrol did not present antifungal activity.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Chien-An Liu ◽  
Heng Zhong ◽  
Joseph Vargas ◽  
Donald Penner ◽  
Mariam Sticklen

The antifungal activity of the herbicides bialaphos and glufosinate, the active moiety of bialaphos, was assessed. Bialaphos showed a higher level of in vitro antifungal activity againstRhizoctonia solani, Sclerotinia homoeocarpa, andPythium aphanidermatumthan glufosinate. Glufosinate suppressed the mycelial growth ofR. solaniandS. homoeocarpa, but it had no inhibitory effect onP. aphanidermatumup to the highest concentration in our testing regimes. Various concentrations of bialaphos solutions were applied to transgenic, bialaphos- and glufosinate-resistant creeping bentgrass inoculated with fungal pathogens. Bialaphos applications were able to significantly reduce symptomatic infection byR. solaniandS. homoeocarpaon transgenic plants. Bialaphos significantly inhibitedP. aphanidermatum, but not to the same degree thatR. solaniandS. homoeocarpawere inhibited. These results indicate that bialaphos may provide a means for the simultaneous control of weeds and fungal pathogens in turf areas with transgenic, bialaphos-resistant creeping bentgrass.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Gholamreza Shokoohi ◽  
Reza Rouhi ◽  
Mohammad Etehadnezhad ◽  
Bahram Ahmadi ◽  
Javad Javidnia ◽  
...  

Background: Aspergillus and Candida species are the most commonly identified fungal pathogens in otomycosis. However, we usually encounter some difficulties in its treatment because many patients show resistance to antifungal agents and present a high recurrence rate. Objectives: The current research was conducted to compare the in vitro activities of luliconazole (LUL), and efinaconazole (EFN) and the nine comparators on Aspergillus and Candida strains isolated from otomycosis. Methods: The in vitro activities of nine common antifungal drugs (amphotericin B (AMB), voriconazole (VRC), fluconazole (FLU), itraconazole (ITC), ketoconazole (KTO), clotrimazole (CLO), nystatin (NYS), terbinafine (TRB), and caspofungin (CAS)) and two novel new azoles (LUL and EFN) against of 108 clinical isolates of Aspergillus and Candida species obtained from otomycosis were assessed according to the CLSI broth microdilution document. Results: The LUL and EFN had the geometric mean minimum inhibitory concentrations (GM MICs) of 0.098 and 0.109 μg/mL against all Aspergillus strains, respectively. Furthermore, the GM MICs of all Candida isolates for LUL, EFN, CAS, CLO, VRC, AMB, ITC, KTO, FLU, NYS, and TRB were calculated to be 0.133, 0.144, 0.194, 0.219, 0.475, 0.537, 0.655, 1.277, 4.905, 9.372, and 13.592 μg/mL, respectively. Additionally, 6 (35.29%), 2 (11.7%), and 1 (5.88%) Candida isolates were resistant to FLU, CAS, and VRC, respectively. Conclusions: As the findings indicated, LUL and EFN showed the lowest GM MIC values against the examined species. Accordingly, these novel imidazole and triazole antifungal agents can be regarded as proper candidates for the treatment of otomycosis caused by Aspergillus and Candida strains.


2019 ◽  
Vol 2 (3) ◽  
pp. 42-44
Author(s):  
Aarti Patil ◽  
Sadat Quazi

The present study was undertaken to evaluate in-vitro antifungal activity of Semecarpus anacardium Linn. oil against four fungal pathogens, viz. Curvularia penniseti, Curvularia lunata, Fusarium oxysporum f. sp. ciceris and Helminthosporium maydis using poisoned food technique. The DMSO extract of S.anacardium oil was found to be more or less active against almost all tested pathogenic fungi with a varied spectrum of reduced growth. C.lunata has shown 93.3% inhibition and F.oxysporum and H.maydis have shown 94.4% inhibition and 100% mycelial inhibitions at 15% and 18% concentrations of the extract respectively. Whereas, C.penniseti was found to be quite sensitive that showed 88.9 inhibitions at 10% concentration but it showed 100% inhibition at 18% concentration.  


Author(s):  
Magda Rhayanny Assunção Ferreira ◽  
Rosilene Rodrigues Santiago ◽  
Walicyranison Plínio Silva-Rocha ◽  
Luanda Barbara Ferreira Canário de Souza ◽  
Maria Graciela Icher Faria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document