scholarly journals Fenugreek extract application improves plant performance of Alternaria solani infected tomato plants

2021 ◽  
Vol 58 (04) ◽  
pp. 1263-1275
Author(s):  
Rashid Iqbal Khan

Plant extracts (PE’s) has emerged as a safer alternative to manage the fungal pathogens affecting tomato productivity. The current study aimed to evaluate the antimicrobial potential of methanolic fenugreek extract against Alternaria solani, a causal agent of early blight disease in tomato. Fenugreek extract was used at different concentrations of 5%, 10%, 15%, 20% and 25% under in vitro conditions. Results concluded that 25% fenugreek extract significantly reduced the radial growth (2.5 cm) of A. solani under in vitro conditions. Based on in vitro results, three concentrations (5%, 15% and 25%) of fenugreek extract was examined under greenhouse and field conditions. The outcomes expressed that 5% fenugreek extract reduced the disease severity up to 30.19% under greenhouse conditions and up to 40.53% under field trials. Although, application of fenugreek extract had exhibited non-significant impact on vegetative and reproductive growth parameters. However, its application had proved better results as compared to those plants which are infected with A. solani but received zero application of fenugreek extract. Furthermore, the effectiveness of plant extracts was evaluated by variant photosynthetic, antioxidative, polyphenolic and hypersensitive response of A. solani affected tomato plants. The 25% fenugreek extract application had augmented the chlorophyll pigments along with the significant increment of superoxide dismutase (174.16 U mg-1 protein), peroxidase (7.61 µmol min-1 g-1 protein) and catalase activity (4.73 nmol min-1 g-1 protein). Similar outcomes were observed regarding phenolic compounds, where 5% fenugreek extract application had enhanced flavonoid levels (26.62 mg QuE g-1), tannins (1.28 mg TE g-1 extract) and total phenolic contents (2.39 mg GAE g-1) in tomato leaves demonstrating its protective effect against early blight. In dose response, 25% fenugreek extract was most effective in reducing lipid peroxidation and enhancing H2O2 levels. The outcomes of study exhibited the fenugreek extract as an effective strategy to be used against A. solani to control early blight infection in tomato plants. Thus, it can serve as suitable fungicide alternative for resource-poor agriculture areas mainly in developing countries.

Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

Abstract Composts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, for in vitro antifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters in Arabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genus Bacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth of Arabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect on Arabidopsis and tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect on Arabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn't affect Arabidopsis growth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


2012 ◽  
Vol 48 (No. 2) ◽  
pp. 74-79 ◽  
Author(s):  
S.M.A. Nashwa ◽  
K.A.M. Abo-Elyousr

The antimicrobial activity of six plant extracts from Ocimum basilicum (Sweat Basil), Azadirachta indica (Neem), Eucalyptus chamadulonsis (Eucalyptus), Datura stramonium (Jimsonweed), Nerium oleander (Oleander), and Allium sativum (Garlic) was tested for controlling Alternaria solani in vitro and in vivo. In in vitro study the leaf extracts of D. stramonium, A. indica, and A. sativum at 5% concentration caused the highest reduction of mycelial growth of A. solani (44.4, 43.3 and 42.2%, respectively), while O. basilicum at 1% and 5% concentration and N. oleander at 5% concentration caused the lowest inhibition of mycelial growth of the pathogen. In greenhouse experiments the highest reduction of disease severity was achieved by the extracts of A. sativum at 5% concentration and D. stramonium at 1% and 5% concentration. The greatest reduction of disease severity was achieved by A. sativum at 5% concentration and the smallest reduction was obtained when tomato plants were treated with O. basilicum at 1% and 5% concentration (46.1 and 45.2 %, respectively). D. stramonium and A. sativum at 5% concentration increased the fruit yield by 76.2% and 66.7% compared to the infected control. All treatments with plant extracts significantly reduced the early blight disease as well as increased the yield of tomato compared to the infected control under field conditions.


2018 ◽  
Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A. Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

AbstractComposts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, forin vitroantifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters inArabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genusBacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth ofArabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect onArabidopsisand tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect onArabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn’t affectArabidopsisgrowth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


2021 ◽  
Vol 15 (3) ◽  
pp. 1591-1601
Author(s):  
Sumit Kumar ◽  
Ram Chandra ◽  
Lopamudra Behera

Botanicals obtained from the plants are well known for the suppression of inimical plant pathogens. The present study explores the efficacy of five locally available plant extracts for their antifungal activity against the early blight of potato incited by Alternaria solani. The extracts include Datura stramonium, Allium sativum, Azadirachta indica, Eucalyptus globulus, and Lantana camara. All extracts reduced mycelial growth and conidial germination of A. solani. In vitro studies showed that extracts obtained from A. sativum and A. indica have significant inhibition of mycelial growth of A. solani (88.80 and 86.62 percent) at 20 percent concentration. Higher concentrations of A. sativum extract caused a higher reduction of A. solani radial growth on potato dextrose agar medium. Extracts obtained from A. sativum and A. indica at 20 percent concentration, were found most effective for inhibition of conidial germination (85.50 and 80.04 percent) respectively of A. solani. Observations by scanning electron microscope (SEM) showed dramatic alteration in A. solani hyphae collapsed and spores shrinked when treated with extract of A. sativum at a 20 per cent concentration. The qualitative and quantitative analysis of various phytochemicals like flavonoids, alkaloids, saponins, tannins, steroids, terpenoids, glycosides, and phenols was showed A. sativum extract better than all the other plant extracts. Observation also revealed that 20 percent concentration of garlic extract has potential to inhibit to A. solani.


2021 ◽  
Vol 9 (33) ◽  
pp. 147-155
Author(s):  
Solange Monteiro de Toledo Piza Gomes Carneiro ◽  
Euclides Davidson Bueno Romano ◽  
Erika Pignoni ◽  
Marcus Zulian Teixeira ◽  
Maria Elizabeth da Costa Vasconcelos ◽  
...  

Background: homeopathy is a means permitted in organic agriculture to control disease and plagues; biotherapics are a practical means for farmers to intervene on the health of plants in agro-ecological systems of production. Tomato-plants can be affected by several diseases, one of the most significant ones in Brazil is early blight, caused by fungus Alternaria solani, due to the damage it causes and its wide distribution in the country. Aims: to establish whether a biotherapic of A. solani may interfere on the in vitro development of the fungus and whether it affects the severity of early blight on tomato-plants in greenhouse. Methods: the effect of the biotherapic on the fungus was evaluated through the percentage of germinated spores under microscope and the growth of colonies in a culture medium. Treatments used were: biotherapic 26cH, 27cH, 28cH, 29cH and 30cH; sterilized distilled water; and diluted and agitated hydroalcoholic solution. The effect of the biotherapic on the development of disease was evaluated in 4 experiments in greenhouse. Plants were kept in vases and subjected to artificial inoculation of the fungus after the application of treatments. Evaluation of disease was carried out through diagrammatic scale. Results: no treatment affected the germination of spores or the development of fungus colonies in the culture medium. In the first test, treatment 26cH differed from water in Tukey’s test at 5% but did not differed from diluted and agitated hydroalcoholic solution. In the second test, treatments 27cH and 28cH showed significant difference from both water and hydroalcoholic solution with an average control of disease of 57% and 62% respectively. The other 2 tests did nor exhibit any significant effect. Conclusions: there was no direct effect of the biotherapic on the fungus, but there was an effect on the severity of the disease. Factors affecting the efficiency of the biotherapic must be better understood before it can be recommended to farmers for the management of early blight in tomato-plants.


Author(s):  
Meseret Tadelo ◽  
Tamirat Wato ◽  
Tilahun Negash

Background: Tomato (Lycopersicon esculentum Mill.) belongs to the family Solanaceae. In Ethiopia, control of early blight is largely dependent on fungicidal application. There is a research need to identify effective botanical extracts to control Alternaria solani that cause early blight of tomato and for evaluation of plant extracts through different solvents on the target pathogen. Methods: In vitro experiment was conducted to evaluate the effectiveness of crude extracts of 16 selected medicinal plants against Alternaria solani. Thus, crude extracts were extracted from medicinal plants with different solvents (methanol, ethanol and petroleum at (25%, 50% and 100%) concentrations. The Alternaria solani was isolated from infected tomato leaves showing early blight symptoms. Evaluation of plant extracts was carried out against Alternaria solani using food poisoned technique on PDA. Result: Results showed that most of the methanolic extract plants were showed significant inhibition of the mycelial growth as compared to ethanolic and petroleum ether extracts. A higher rate of mycelial reduction was recorded by ethanol extracts of Allium sativum at all concentrations (100%) followed by methanol extracts of Allium sativum at 25%, 50%, 100% concentration (90.02%, 97.01%, 100% respectively). The effectiveness of extracts against Alternaria solani depends on use at the higher concentrations and various solvents. For crude extracts that have shown higher inhibitory effects against Alternaria solani in vitro conditions, actual chemical compounds should be identified. Furthermore, it is also important to evaluate these plants on other microbes, study to test in vivo and to assess their real potential field condition wherever early blight is an important disease of tomato.


2011 ◽  
Vol 10 (42) ◽  
pp. 8291-8295 ◽  
Author(s):  
Yanar Yusuf ◽  
Gouml kccedil e Ayhan ◽  
Kadioglu Izzet ◽  
Ccedil am Halit ◽  
Whalon Mark

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1402
Author(s):  
Asmaa El-Nagar ◽  
Abdelnaser A. Elzaawely ◽  
Naglaa A. Taha ◽  
Yasser Nehela

Tomato (Solanum lycopersicum L.) is among the most important vegetable crops worldwide. Early blight disease, caused by Alternaria solani, is a destructive foliar disease of tomato and other Solanaceae species. Herein, we investigated the in vitro antifungal properties of gallic acid and two of its derivatives (syringic and pyrogallic acids) against A. solani during 2019 and 2020 seasons. The physiological and biochemical effects of these compounds on infected tomato plants were also investigated using the whole plant bioassay. The in vitro investigation showed that all tested compounds showed fungistatic action and inhibited the mycelial radial growth of A. solani in a dose-dependent manner. In two separate pot-experiments, those compounds efficiently suppressed the development of the disease symptoms and area under disease progress curve (AUDPC), without any phytotoxic effects on the treated tomato plants. Additionally, all tested compounds positively enhanced the biochemical traits of treated plants including the chlorophyll content, the total soluble phenolics, the total soluble flavonoids, and the enzymatic activities of catalase, peroxidase, and polyphenol oxidase during 2019 and 2020 seasons. Moreover, the treatment with gallic acid and its derivatives significantly increased all yield components of A. solani-infected tomato plants such as the total number of flowers and fruits, and the fruit yield for each tomato plant in both experiments. Considering the fungitoxicity of phenolic acids against A. solani with no phytotoxicity on treated tomato plants, we believe that gallic acid and its derivatives might be a sustainable eco-friendly control strategy to reduce the usage of chemical fungicides partially or entirely against A. solani particularly, and fungal diseases in general.


Sign in / Sign up

Export Citation Format

Share Document