Chitinolytic proteins secreted by Cellulosimicrobium sp. NTK2

2020 ◽  
Vol 367 (7) ◽  
Author(s):  
Daisuke Niki ◽  
Akari Higashitani ◽  
Haruki Osada ◽  
Tomohiro Bito ◽  
Katsuhiko Shimizu ◽  
...  

ABSTRACT Cellulosimicrobium sp. NTK2 (NTK2 strain) was isolated as a chitinolytic bacterium from mature compost derived from chitinous waste. The growth of the NTK2 strain was enhanced by supplementation of the culture medium with 2% crystalline chitin. Approximately 70% of the supplemented crystalline chitin was degraded during cultivation. Whole genome analysis of the NTK2 strain identified eight chitinases and two chitin-binding proteins. The NTK2 strain secreted two bacterial extracellular solute-binding proteins, three family 18 glycosyl hydrolases and one lytic polysaccharide monooxygenase specifically in the presence of crystalline chitin. A chitinolytic enzyme with a molecular mass of 29 kDa on SDS-PAGE under native conditions was also secreted. This chitinolytic enzyme exhibited the largest band upon zymography but could not be identified. In an attempt to identify all the chitinases secreted by the NTK2 strain, we expressed recombinant versions of the proteins exhibiting chitinolytic activity in Escherichia coli. Our results suggest that the 29 kDa protein belonging to family 19 glycosyl hydrolase was expressed specifically in the presence of 2% crystalline chitin.

2006 ◽  
Vol 52 (7) ◽  
pp. 651-657 ◽  
Author(s):  
Luis Morales de la Vega ◽  
J Eleazar Barboza-Corona ◽  
Maria G Aguilar-Uscanga ◽  
Mario Ramírez-Lepe

A chitinolytic enzyme from Bacillus thuringiensis subsp. aizawai has been purified and its molecular mass was estimated ca. 66 kDa by sodium dodecyl sulfate – polyacryamide gel electrophoresis (SDS–PAGE). The enzyme was able to hydrolyze chitin to chitobiosides but not carboxymethylcellulose, cellulose, pullulan, and laminarin. Optimal pH and temperature were detected at 6 and 50 °C, respectively. Stability, in the absence of substrate, was observed at temperatures less than 60 °C and pH between 5 and 8. Enzyme activity was significantly inhibited by K+ and EDTA and completely inhibited by Hg2+. Purified chitinase showed lytic activity against cell walls from six phytopathogenic fungi and inhibited the mycelial growth of both Fusarium sp. and Sclerotium rolfsii. The biocontrol efficacy of the enzyme was tested in the protection of bean seeds infested with six phytopathogenic fungi.Key words: chitinase, Bacillus thuringiensis, purification, phytopathogenic fungi.


1990 ◽  
Vol 269 (3) ◽  
pp. 723-728 ◽  
Author(s):  
M Wolf ◽  
M Baggiolini

Cytosol and membrane fractions from human neutrophils, monocytes, lymphocytes and platelets were separated by SDS/PAGE, blotted on to nitrocellulose and assayed for selective binding of phosphatidylserine (PS). Two PS-binding proteins with apparent molecular masses of 115 kDa and 100 kDa were identified in the cytosol of neutrophils, monocytes and lymphocytes. Corresponding bands along with other PS-binding proteins were detected in platelets in both cytosol and membrane fractions. These proteins were also found to bind protein kinase C (PKC) provided that PS was present. The 115 kDa and 100 kDa proteins (PS-p115/110) were partially purified from neutrophils and were used for the study of PS and PKC binding. The binding of PS did not require Ca2+ or Mg2+ and was inhibited by phosphatidic acid, by 1-alkyl-2-acetylphosphocholine and, to a lesser extent, by other lipids. The binding of PKC, however, was strictly PS- and Ca2(+)-dependent and seems to occur secondarily to PS binding.


2016 ◽  
Vol 82 (22) ◽  
pp. 6557-6572 ◽  
Author(s):  
Yuka Kojima ◽  
Anikó Várnai ◽  
Takuya Ishida ◽  
Naoki Sunagawa ◽  
Dejan M. Petrovic ◽  
...  

ABSTRACTFungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such asGloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome ofG. trabeumencodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants ofGtLPMO9A seem to be produced, a single-domain variant,GtLPMO9A-1, and a longer variant,GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinctGtLPMO9A-2 inPichia pastorisand investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed thatGtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs,GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action ofGtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO,NcLPMO9C fromNeurospora crassarevealed thatGtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity ofNcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities ofGtLPMO9A-2. These results provide insight into the LPMO potential ofG. trabeumand provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity.IMPORTANCECurrently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme,GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone.GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential ofGtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


1999 ◽  
Vol 46 (4) ◽  
pp. 935-939 ◽  
Author(s):  
D Hołody ◽  
J Strzezek

Low molecular mass, heparin-binding proteins from seminal plasma play an important role in gametes interaction whereas plasmatic Zn2+-binding proteins stabilize chromatin and plasmalemma structures and protect spermatozoa in the female reproductive tract. By means of affinity chromatography the heparin- and Zn2+-binding proteins were isolated from boar seminal plasma and both preparations were analyzed by reverse HPLC. Most of the proteins bound to heparine and Zn2+-ions were classified as spermadhesins. Three fractions binding exclusively Zn2+ were isolated. They differ in amino-acid composition, content of glucosamine and content of protein components revealed by SDS/PAGE.


2021 ◽  
Vol 9 ◽  
Author(s):  
Damao Wang ◽  
Yanping Li ◽  
Yuting Zheng ◽  
Yves S. Y. Hsieh

Lytic polysaccharide monooxygenase (LPMO) is a newly discovered and widely studied enzyme in recent years. These enzymes play a key role in the depolymerization of sugar-based biopolymers (including cellulose, hemicellulose, chitin and starch), and have a positive significance for biomass conversion. LPMO is a copper-dependent enzyme that can oxidize and cleave glycosidic bonds in cellulose and other polysaccharides. Their mechanism of action depends on the correct coordination of copper ions in the active site. There are still difficulties in the analysis of LPMO activity, which often requires multiple methods to be used in concert. In this review, we discussed various LPMO activity analysis methods reported so far, including mature mass spectrometry, chromatography, labeling, and indirect measurements, and summarized the advantages, disadvantages and applicability of different methods.


1999 ◽  
Vol 181 (10) ◽  
pp. 3003-3009 ◽  
Author(s):  
Denis Faure ◽  
Jos Desair ◽  
Veerle Keijers ◽  
My Ali Bekri ◽  
Paul Proost ◽  
...  

ABSTRACT The rhizosphere nitrogen-fixing bacteriumAzospirillum irakense KBC1 is able to grow on pectin and β-glucosides such as cellobiose, arbutin, and salicin. Two adjacent genes, salA and salB, conferring β-glucosidase activity to Escherichia coli, have been identified in a cosmid library of A. irakense DNA. The SalA and SalB enzymes preferentially hydrolyzed aryl β-glucosides. A Δ(salA-salB) A. irakense mutant was not able to grow on salicin but could still utilize arbutin, cellobiose, and glucose for growth. This mutant could be complemented by either salA or salB, suggesting functional redundancy of these genes in salicin utilization. In contrast to this functional homology, the SalA and SalB proteins, members of family 3 of the glycosyl hydrolases, show a low degree of amino acid similarity. Unlike SalA, the SalB protein exhibits an atypical truncated C-terminal region. We propose that SalA and SalB are representatives of the AB and AB′ subfamilies, respectively, in glycosyl hydrolase family 3. This is the first genetic implication of this β-glucosidase family in the utilization of β-glucosides for microbial growth.


Author(s):  
Urszula Jankiewicz ◽  
◽  
Arletta Kochańska-Jeziorska ◽  
Agnieszka Gałązka

This review focuses on the enzymatic breakdown of chitin, taking into account the latest scientific reports on the activity of lytic polysaccharide monooxygenase (LPMO). Chitin is a natural, abundant polysaccharide of great practical importance in the environment. However, the insolubility in water and the tightly packed crystalline structure of chitin pose a serious obstacle to enzymatic degradation. This substrate can be converted into soluble sugars by the action of glycosidic hydrolases (GH), also known as chitinases. LPMO could prove to be helpful in enzymatic processes that increase the rate of chitin depolymerisation by improving the availability of substrates for chitinases. The unique action of LPMO is based on the ability to catalyse the oxidative cleavage of glycosidic chains present in complex, resistant crystal networks of chitin, and this cleavage facilitates the subsequent action of glycolytic hydrolases.


2018 ◽  
Vol 20 (9) ◽  
pp. 2091-2100 ◽  
Author(s):  
Damao Wang ◽  
Jing Li ◽  
Germán Salazar-Alvarez ◽  
Lauren S. McKee ◽  
Vaibhav Srivastava ◽  
...  

The gene CCT67099 from Fusarium fujikuroi was shown to encode a novel enzyme from the Lytic Polysaccharide Monooxygenase (LPMO) Family AA11.


Sign in / Sign up

Export Citation Format

Share Document