Functional characterization of the putative FAD synthase from Mycoplasma hyopneumoniae

2021 ◽  
Vol 368 (3) ◽  
Author(s):  
Amanda Malvessi Cattani ◽  
Camila Vieira Pinheiro ◽  
Irene Silveira Schrank ◽  
Franciele Maboni Siqueira

ABSTRACT In bacteria, the biosynthesis of the cofactor flavin adenine dinucleotide (FAD), important in many physiological responses, is catalyzed by the bifunctional enzyme FAD synthase (FADSyn) which converts riboflavin into FAD by both kinase and adenylylation activity. The in silico 3D structure of a putative FADSyn from Mycoplasma hyopneumoniae (MhpFADSyn), the etiological agent of enzootic pneumonia was already reported, nevertheless, the in vitro functional characterization was not yet demonstrated. Our phylogenetic analysis revealed that MhpFADSyn is close related to the bifunctional FADSyn from Corynebacterium ammoniagenes. However, only the domain related to adenylylation was assigned by InterPro database. The activity of MhpFADSyn was evaluated through in vitro enzymatic assays using cell extracts from IPTG-inducible heterologous expression of MhpFADSyn in Escherichia coli. The flavoproteins were analyzed by HPLC and results showed that IPTG-induced cell lysate resulted in the formation of twofold increased amounts of FAD if compared to non IPTG-induced cells. Consumption of riboflavin substrate was also threefold greater in IPTG-induced lysate compared to non IPTG-induced cell extract. Thus, the recombinant MhpFADSyn protein could be associated to FAD biosynthesis. These findings contribute to expand the range of potential drug targets in diseases control and unveil metabolic pathways that could be attribute to mycoplasmas.

2021 ◽  
Author(s):  
Rupert Beale ◽  
Agustina P Bertolin ◽  
Annabel Borg ◽  
Berta Canal ◽  
John FX Diffley ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterised pharmaceuticals for nsp13 inhibitors using a FRET-based high-throughput screening (HTS) approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii417-iii418
Author(s):  
Ming Yuan ◽  
Karlyne Reilly ◽  
Christine Pratilas ◽  
Christopher Heaphy ◽  
Fausto Rodriguez

Abstract To identify the biologic relevance of ATRX loss in NF1-associated gliomagenesis, we studied the effects of Atrx loss using four previously characterized Nf1+/-Trp53+/- murine glioma lines. Lines 130G#3 and 158D#8 (corresponding to grade IV and III gliomas, respectively) displayed preserved ATRX protein expression compared to NIH-3T3 cells. We studied the effects of Atrx knockdown in these two lines in the presence and absence of the TERT inhibitor, BIRBR1532. Using a telomere-specific FISH assay, we identified increased signal intensity after Atrx knockdown, only in the presence of the TERT inhibitor. These features are reminiscent of ALT, although there were no significant alterations in cell growth. Next, we studied the effect of ATRX loss in MPNST lines ST88-14, NF90-8, STS-26T. These cell lines all expressed ATRX and DAXX. However, STS-26T contained a TERT promoter mutation and ST88-14 had a known SNP in the TERT promoter, while NF90-8 had no alterations. ATRX siRNA knockdown showed no significant effects in cell proliferation or apoptosis. However, ATRX knockdown resulted in rare ultra-bright foci, indicative of ALT. Next, we studied the in vitro effect of the ATR inhibitor VE-821 in MPNST cell lines. Only NF90-8 (lacking TERT alterations) demonstrated a decrease in growth after ATRX knockdown and VE-821 treatment. However, ATRX knockdown alone did not affect sensitivity to carboplatin. Our findings further support a role for ATRX loss with subsequent ALT activation in a biologic subset of NF1-associated malignancies, thereby opening an opportunity for therapeutic targeting of these aggressive tumors using specific classes of drugs.


1996 ◽  
Vol 7 (10) ◽  
pp. 1535-1546 ◽  
Author(s):  
J P Paccaud ◽  
W Reith ◽  
J L Carpentier ◽  
M Ravazzola ◽  
M Amherdt ◽  
...  

We screened a human cDNA library with a probe derived from a partial SEC23 mouse homologue and isolated two different cDNA clones (hSec23A and hSec23B) encoding proteins of a predicted molecular mass of 85 kDa. hSec23Ap and hSec23Bp were 85% identical and shared 48% identity with the yeast Sec23p. Affinity-purified anti-hSec23A recognized a protein of approximately 85 kDa on immunoblots of human, mouse, and rat cell extracts but did not recognize yeast Sec23p. Cytosolic hSec23Ap migrated with an apparent molecular weight of 350 kDa on a gel filtration column, suggesting that it is part of a protein complex. By immunoelectron microscopy, hSec23Ap was found essentially in the ribosome-free transitional face of the endoplasmic reticulum (ER) and associated vesicles. hSec23Ap is a functional homologue of the yeast Sec23p as the hSec23A isoform complemented the temperature sensitivity of the Saccharomyces cerevisiae sec23-1 mutation at a restrictive temperature of 34 degrees C. RNase protection assays indicated that both hSec23 isoforms are coexpressed in various human tissues, although at a variable ratio. Our data demonstrate that hSec23Ap is the functional human counterpart of the yeast COPII component Sec23p and suggest that it plays a similar role in mammalian protein export from the ER. The exact function of hSec23Bp remains to be determined.


2004 ◽  
pp. 85-94
Author(s):  
Bjarke Ebert ◽  
Sally Anne Thompson ◽  
Signe Í. Stórustovu ◽  
Keith A. Wafford

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2876 ◽  
Author(s):  
Lin Tan ◽  
Mei Wang ◽  
Youfa Kang ◽  
Farrukh Azeem ◽  
Zhaoxi Zhou ◽  
...  

Mango (Mangifera indica L.) is abundant in proanthocyanidins (PAs) that are important for human health and plant response to abiotic stresses. However, the molecular mechanisms involved in PA biosynthesis still need to be elucidated. Anthocyanidin reductase (ANR) catalyzes a key step in PA biosynthesis. In this study, three ANR cDNAs (MiANR1-1,1-2,1-3) were isolated from mango, and expressed in Escherichia coli. In vitro enzyme assay showed MiANR proteins convert cyanidin to their corresponding flavan-3-ols, such as (−)-catechin and (−)-epicatechin. Despite high amino acid similarity, the recombinant ANR proteins exhibited differences in enzyme kinetics and cosubstrate preference. MiANR1-2 and MiANR1-3 have the same optimum pH of 4.0 in citrate buffer, while the optimum pH for MiANR1-1 is pH 3.0 in phosphate buffer. MiANR1-1 does not use either NADPH or NADH as co-substrate while MiANR1-2/1-3 use only NADPH as co-substrate. MiANR1-2 has the highest Km and Vmax for cyanidin, followed by MiANR1-3 and MiANR1-1. The overexpression of MiANRs in ban mutant reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate MiANRs can form the ANR pathway, leading to the formation of two types of isomeric flavan-3-ols and PAs in mango.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Stanislav Huszár ◽  
Vinayak Singh ◽  
Alica Polčicová ◽  
Peter Baráth ◽  
María Belén Barrio ◽  
...  

ABSTRACT The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


Vaccine ◽  
2009 ◽  
Vol 27 (48) ◽  
pp. 6656-6661 ◽  
Author(s):  
Gurudutt Joshi ◽  
Ravindra Sharma ◽  
Naresh Kumar Kakker

2013 ◽  
Vol 89 ◽  
pp. 202-214 ◽  
Author(s):  
Gagan Garg ◽  
Dolores Bernal ◽  
Maria Trelis ◽  
Javier Forment ◽  
Javier Ortiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document