anthocyanidin reductase
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 7 (20) ◽  
pp. eabg4682
Author(s):  
Ji Hyung Jun ◽  
Nan Lu ◽  
Maite Docampo-Palacios ◽  
Xiaoqiang Wang ◽  
Richard A. Dixon

Proanthocyanidins (PAs) are plant natural products important for agriculture and human health. They are polymers of flavan-3-ol subunits, commonly (−)-epicatechin and/or (+)-catechin, but the source of the in planta extension unit that comprises the bulk of the polymer remains unclear, as does how PA composition is determined in different plant species. Anthocyanidin reductase (ANR) can generate 2,3-cis-epicatechin as a PA starter unit from cyanidin, which itself arises from 2,3-trans-leucocyanidin, but ANR proteins from different species produce mixtures of flavan-3-ols with different stereochemistries in vitro. Genetic and biochemical analyses here show that ANR has dual activity and is involved not only in the production of (−)-epicatechin starter units but also in the formation of 2,3-cis-leucocyanidin to serve as (−)-epicatechin extension units. Differences in the product specificities of ANRs account for the presence/absence of PA polymerization and the compositions of PAs across plant species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Taly Trainin ◽  
Rotem Harel-Beja ◽  
Irit Bar-Ya’akov ◽  
Zohar Ben-Simhon ◽  
Rami Yahalomi ◽  
...  

Anthocyanins are important dietary and health-promoting substances present in high quantities in the peel and arils of the pomegranate (Punica granatum L.) fruit. Yet, there is a high variation in the content of anthocyanin among different pomegranate varieties. The ‘Black’ pomegranate variety (P.G.127-28) found in Israel contains exceptionally high levels of anthocyanins in its fruit peel which can reach up to two orders of magnitude higher content as compared to that of other pomegranate varieties’ peel anthocyanins. Biochemical analysis reveals that delphinidin is highly abundant in the peel of ‘Black’ variety. The pattern of anthocyanin accumulation in the fruit peel during fruit development of ‘Black’ variety differs from that of other pomegranates. High anthocyanin levels are maintained during all developmental stages. Moreover, the accumulation of anthocyanin in the fruit peel of ‘Black’ variety is not dependent on light. Genetic analysis of an F2 population segregating for the “black” phenotype reveals that it is determined by a single recessive gene. Genetic mapping of the F2 population using single nucleotide polymorphism (SNP) markers identified few markers tightly linked to the “black” phenotype. Recombination analysis of the F2 population and F3 populations narrowed the “black” trait to an area of 178.5 kb on the draft genome sequence of pomegranate cv. ‘Dabenzi.’ A putative anthocyanidin reductase (ANR) gene is located in this area. Only pomegranate varieties displaying the “black” trait carry a base pair deletion toward the end of the gene, causing a frame shift resulting in a shorter protein. We propose that this mutation in the ANR gene is responsible for the different anthocyanin composition and high anthocyanin levels of the “black” trait in pomegranate.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Francisco Gil-Muñoz ◽  
Jesús A. Sánchez-Navarro ◽  
Cristina Besada ◽  
Alejandra Salvador ◽  
María Luisa Badenes ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2876 ◽  
Author(s):  
Lin Tan ◽  
Mei Wang ◽  
Youfa Kang ◽  
Farrukh Azeem ◽  
Zhaoxi Zhou ◽  
...  

Mango (Mangifera indica L.) is abundant in proanthocyanidins (PAs) that are important for human health and plant response to abiotic stresses. However, the molecular mechanisms involved in PA biosynthesis still need to be elucidated. Anthocyanidin reductase (ANR) catalyzes a key step in PA biosynthesis. In this study, three ANR cDNAs (MiANR1-1,1-2,1-3) were isolated from mango, and expressed in Escherichia coli. In vitro enzyme assay showed MiANR proteins convert cyanidin to their corresponding flavan-3-ols, such as (−)-catechin and (−)-epicatechin. Despite high amino acid similarity, the recombinant ANR proteins exhibited differences in enzyme kinetics and cosubstrate preference. MiANR1-2 and MiANR1-3 have the same optimum pH of 4.0 in citrate buffer, while the optimum pH for MiANR1-1 is pH 3.0 in phosphate buffer. MiANR1-1 does not use either NADPH or NADH as co-substrate while MiANR1-2/1-3 use only NADPH as co-substrate. MiANR1-2 has the highest Km and Vmax for cyanidin, followed by MiANR1-3 and MiANR1-1. The overexpression of MiANRs in ban mutant reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate MiANRs can form the ANR pathway, leading to the formation of two types of isomeric flavan-3-ols and PAs in mango.


Molecules ◽  
2017 ◽  
Vol 22 (12) ◽  
pp. 2241 ◽  
Author(s):  
Lei Zhao ◽  
Xiao-Lan Jiang ◽  
Yu-Mei Qian ◽  
De-Yu Xie ◽  
Li-Ping Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document