scholarly journals The Roles of Bacterial DNA Double-Strand Break Repair Proteins in Chromosomal DNA Replication

2020 ◽  
Vol 44 (3) ◽  
pp. 351-368 ◽  
Author(s):  
Anurag Kumar Sinha ◽  
Christophe Possoz ◽  
David R F Leach

ABSTRACT It is well established that DNA double-strand break (DSB) repair is required to underpin chromosomal DNA replication. Because DNA replication forks are prone to breakage, faithful DSB repair and correct replication fork restart are critically important. Cells, where the proteins required for DSB repair are absent or altered, display characteristic disturbances to genome replication. In this review, we analyze how bacterial DNA replication is perturbed in DSB repair mutant strains and explore the consequences of these perturbations for bacterial chromosome segregation and cell viability. Importantly, we look at how DNA replication and DSB repair processes are implicated in the striking recent observations of DNA amplification and DNA loss in the chromosome terminus of various mutant Escherichia coli strains. We also address the mutant conditions required for the remarkable ability to copy the entire E. coli genome, and to maintain cell viability, even in the absence of replication initiation from oriC, the unique origin of DNA replication in wild type cells. Furthermore, we discuss the models that have been proposed to explain these phenomena and assess how these models fit with the observed data, provide new insights and enhance our understanding of chromosomal replication and termination in bacteria.

2012 ◽  
Vol 26 (5) ◽  
pp. 2094-2104 ◽  
Author(s):  
Marlen Keimling ◽  
Miriam Deniz ◽  
Dominic Varga ◽  
Andreea Stahl ◽  
Hubert Schrezenmeier ◽  
...  

2005 ◽  
Vol 25 (8) ◽  
pp. 3127-3139 ◽  
Author(s):  
Julie S. Martin ◽  
Nicole Winkelmann ◽  
Mark I. R. Petalcorin ◽  
Michael J. McIlwraith ◽  
Simon J. Boulton

ABSTRACT The BRCA2 tumor suppressor is implicated in DNA double-strand break (DSB) repair by homologous recombination (HR), where it regulates the RAD51 recombinase. We describe a BRCA2-related protein of Caenorhabditis elegans (CeBRC-2) that interacts directly with RAD-51 via a single BRC motif and that binds preferentially to single-stranded DNA through an oligonucleotide-oligosaccharide binding fold. Cebrc-2 mutants fail to repair meiotic or radiation-induced DSBs by HR due to inefficient RAD-51 nuclear localization and a failure to target RAD-51 to sites of DSBs. Genetic and cytological comparisons of Cebrc-2 and rad-51 mutants revealed fundamental phenotypic differences that suggest a role for Cebrc-2 in promoting the use of an alternative repair pathway in the absence of rad-51 and independent of nonhomologous end joining (NHEJ). Unlike rad-51 mutants, Cebrc-2 mutants also accumulate RPA-1 at DSBs, and abnormal chromosome aggregates that arise during the meiotic prophase can be rescued by blocking the NHEJ pathway. CeBRC-2 also forms foci in response to DNA damage and can do so independently of rad-51. Thus, CeBRC-2 not only regulates RAD-51 during HR but can also function independently of rad-51 in DSB repair processes.


2014 ◽  
Vol 207 (6) ◽  
pp. 717-733 ◽  
Author(s):  
Karolin Klement ◽  
Martijn S. Luijsterburg ◽  
Jordan B. Pinder ◽  
Chad S. Cena ◽  
Victor Del Nero ◽  
...  

Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis. This obstruction is alleviated by chromatin relaxation via ATM-dependent KAP-1S824 phosphorylation (pKAP-1) and CHD3.1 dispersal from heterochromatic DSBs; however, how heterochromatin compaction is actually adjusted after CHD3.1 dispersal is unknown. In this paper, we demonstrate that Artemis-dependent DSB repair in heterochromatin requires ISWI (imitation switch)-class ACF1–SNF2H nucleosome remodeling. Compacted chromatin generated by CHD3.1 after DNA replication necessitates ACF1–SNF2H–mediated relaxation for DSB repair. ACF1–SNF2H requires RNF20 to bind heterochromatic DSBs, underlies RNF20-mediated chromatin relaxation, and functions downstream of pKAP-1–mediated CHD3.1 dispersal to enable DSB repair. CHD3.1 and ACF1–SNF2H display counteractive activities but similar histone affinities (via the plant homeodomains of CHD3.1 and ACF1), which we suggest necessitates a two-step dispersal and recruitment system regulating these opposing chromatin remodeling activities during DSB repair.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2684-2684
Author(s):  
Youngji Park ◽  
Yuan Lin ◽  
Stanton L. Gerson

Abstract Intact function of DNA repair gene is required for maintenance of genomic stability and long term survival of stem cells. We hypothesize that DNA-PKcs, a key factor for DNA double-strand break (DSB) repair, is critical for hematopoietic stem cell (HSC) function. Expression level of DNA-PKcs mRNA monitored by RT-PCR was high in kit+lin− and sca+lin− cells, low in sca+kit+lin− cells and not seen in lin+ cells, implying its role in highly proliferative progenitors. To assess the function of HSCs deficient in DSB repair, serial transplantation capacity of scid (DNA-PKcs−/−) BM cells into lethally irradiated recipients was compared to wildtype BM. Primary transplants of scid BM died after treatment with 2Gy irradiation 4 wks post-transplantation (n=3). In contrast, parental scid mice survived 3Gy irradiation, implying radiation hypersensitivity of scid BM cells after transplantation. No changes were found in the telomere length, cell cycle distribution and apoptosis between the wildtype and scid BM cells after primary transplantation. Scid BM cells failed to repopulate recipients after the third round of transplantation (n=8). To assess competitive repopulating capacity, mixtures of wildtype and scid cells were transplanted into lethally irradiated recipients. BM CFU of primary recipients were predominantly wildtype (8 mice for C3H background, total CFU=262; 5 mice for C56B/6 background, total CFU=336; n>15 per mouse). Scid cells with two independent genetic backgrounds caused consistent repopulation defects, confirming repopulation defect is caused by DNA-PKcs deficiency. All five primary recipients with C56B/6 background was repopulated predominantly by wildtype CFU (wt CFU 93±5% vs. wt CFU of input; 60±31%, p<10−4). Six of eight primary recipients with C3H background had BM cells repopulated by wildtype CFUs (wt CFU 93±9 % vs. wt CFU of input; 65+13 %, p<10−4), and two of eight primary recipients (wt CFU 67±10 %, p>0.05) had BM cells repopulated similar to donor mixture of wildtype and scid. BM cells of all eight primary recipient mice with C3H background were transplanted into secondary recipients. In all cases, including recipients of the primary cells with the mixed chimera, most BM CFU of secondary recipients originated from wildtype (wt CFU 96±7.8 %, total 16 mice, total CFU=511, and CFU=192 from the mixed chimera). Sca+kit+lin− cells were isolated from the secondary recipients, cultured for 2wks and genotyped. All sca+kit+lin− cells were originated from wildtype (total n=73, 6 mice), implying DNA-PKcs function for HSC proliferation. This confirmed that primary recipients had reconstituted with 100% wildtype HSCs and that the mixed chimera reverted to 100% wildtype. Frequency of sca+kit+lin− cells in scid BM was significantly higher than wildtype (scid 1.94±0.5x10−4, n=4 vs. wt 0.92±0.4x10−4, n=4; p=0.017). Frequency of sca+kit+lin− cells in scid secondary recipients became similar to wildtype secondary recipients (scid 0.61±0.2x10−4, n=4 vs. wt 0.48±0.02x10−4, n=3; p=0.25), implying decreased self-renewal of scid HSCs during repetitive transplantation. This indicates that deficiency in DNA double-strand break repair (scid) leads to HSC failure during repetitive transplantation. Thus, intact DNA repair is essential for maintenance and genomic stability of HSCs.


2018 ◽  
Author(s):  
Alexander J. Garvin ◽  
Alexandra K. Walker ◽  
Ruth M. Densham ◽  
Anoop Singh Chauhan ◽  
Helen R. Stone ◽  
...  

AbstractSUMOylation in the DNA double-strand break (DSB) response regulates recruitment, activity and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and non-homologous enjoining (NHEJ) through the investigation of the deSUMOylase SENP2. We find regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast we show HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 foci retention and increases NHEJ and radioresistance. Collectively our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.


2020 ◽  
Vol 48 (17) ◽  
pp. e100-e100 ◽  
Author(s):  
Jasper Che-Yung Chien ◽  
Elie Tabet ◽  
Kelsey Pinkham ◽  
Cintia Carla da Hora ◽  
Jason Cheng-Yu Chang ◽  
...  

Abstract Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1–10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.


2021 ◽  
Author(s):  
Naoya Ozawa ◽  
Takehiko Yokobori ◽  
Katsuya Osone ◽  
Chika Katayama ◽  
Kunihiko Suga ◽  
...  

Abstract Ulcerative colitis (UC) is a DNA damage-associated chronic inflammatory disease; the DNA double-strand break (DSB) repair pathway participates in UC-associated dysplasia/colitic cancer carcinogenesis. The DSB/interferon regulatory factor-1 (IRF-1) pathway can induce PD-L1 expression transcriptionally. However, the association of PD-L1/DSB/IRF-1 with sporadic colorectal cancer (SCRC), and UC-associated dysplasia/colitic cancer, remains elusive. Therefore, we investigated the significance of the PD-L1/DSB repair pathway using samples from 17 SCRC and 12 UC patients with rare UC-associated dysplasia/colitic cancer cases by immunohistochemical analysis. We compared PD-L1 expression between patients with SCRC and UC-associated dysplasia/colitic cancer and determined the association between PD-L1 and the CD8+ T-cell/DSB/IRF-1 axis in UC-associated dysplasia/colitic cancer. PD-L1 expression in UC and UC-associated dysplasia/colitic cancer was higher than in normal mucosa or SCRC, and in CD8-positive T lymphocytes in UC-associated dysplasia/colitic cancer than in SCRC. Moreover, PD-L1 upregulation was associated with γH2AX (DSB marker) and IRF-1 upregulation in UC-associated dysplasia/colitic cancer. IRF-1 upregulation was associated with γH2AX upregulation in UC-associated dysplasia/colitic cancer but not in SCRC. Multicolour immunofluorescence staining validated γH2AX/IRF-1/PD-L1 co-expression in colitic cancer tissue sections. Thus, immune cell-induced inflammation might activate the DSB/IRF-1 axis, potentially serving as the primary regulatory mechanism of PD-L1 expression in UC-associated carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document