scholarly journals Models for predicting the within-tree and regional variation of tracheid length and width for plantation loblolly pine

Author(s):  
Joseph Dahlen ◽  
Mohamad Nabavi ◽  
David Auty ◽  
Laurence Schimleck ◽  
Thomas L Eberhardt

Abstract Loblolly pine is a major fibre source for the pulp and paper industry. Here we developed the first nonlinear models to predict the within-tree and regional variation of tracheid length and width for planted loblolly pine. Data were obtained from macerated tracheids and near-infrared spectroscopy calibration models from trees sampled in 109 stands across the southeastern United States. The fixed effects for the final tracheid length model, which included cambial age, height of disk within tree, and physiographic region, explained 71 percent of the variation with root mean square error (RMSE) of 0.28 mm, while the fixed effects for the final tracheid width model explained 57 percent of the variation with RMSE of 1.4 μm. There was significant variation in tracheid properties across the growing regions. Tree maps showing within-tree variability in tracheid properties were produced. Five simulated scenarios were compared using the models developed, with mean tracheid dimensions calculated on a whole-tree basis at a first and second thinnings, and at final harvest. Also from the final harvest, the tops of trees, and outerwood chips produced during lumber manufacturing were also simulated. For the whole tree scenarios, both mean tracheid length and width increased with age, increasing from 2.24 mm and 40.5 μm (age 12), to 2.51 mm and 41.3 μm (age 18), and to 2.73 and 41.8 μm at age 25, respectively. The tops of the trees at age 25 had a mean tracheid length of 2.46 mm and a mean width of 41.0 μm, while the chips had a mean tracheid length of 3.13 mm and a mean width of 42.5 μm. Due to the models representing samples collected from across the southeastern United States, and their relatively high precision, they are suitable for incorporation into growth and yield systems allowing for prediction of tracheid properties.

2021 ◽  
Author(s):  
Andrew Trlica ◽  
Rachel L Cook ◽  
Timothy J Albaugh ◽  
Rajan Parajuli ◽  
David R Carter ◽  
...  

Abstract Rising demand for renewable energy has created a potential market for biomass from short-rotation pine plantations in the southeastern United States. Site preparation, competition control, fertilization, and enhanced seedling genotypes offer the landowner several variables for managing productivity, but their combined effects on financial returns are unclear. This study estimated returns from a hypothetical 10-year biomass harvest in loblolly pine plantation using field studies in the Coastal Plain of North Carolina and the Virginia Piedmont testing combinations of tree genotype, planting density, and silviculture. Although enhanced varietal genotypes could yield more biomass, open-pollinated seedlings at 1,236–1,853 trees ha−1 under operational silviculture had the greatest returns at both sites, with mean whole-tree internal rates of return of 8.3%–9.9% assuming stumpage equal to current pulpwood prices. At a 5% discount rate, break-even whole-tree stumpage at the two sites in the optimal treatments was $8.72–$9.92 Mg−1, and break-even yield was 175–177 Mg ha−1 (roughly 18 Mg ha−1 yr−1 productivity), although stumpage and yield floors were higher if only stem biomass was treated as salable. Dedicated short-rotation loblolly biomass plantations in the region are more likely to be financially attractive when site establishment and maintenance costs are minimized. Study Implications: Our study suggests that dedicated loblolly pine plantations in the US Southeast may be managed to generate positive financial yields for biomass over relatively short (10 year) rotation windows, even at lower stumpage value than at present for pulpwood in the region (<80% current). Intensive use of costly inputs like fertilizer, vigorous chemical competition control, and elite genetics in planting stock did improve biomass yields. However, the management combinations that favored the highest financial returns emphasized the least expensive open-pollinated stock, lower-input operational silviculture, and moderate-to-high planting density.


2021 ◽  
Author(s):  
Arun Regmi ◽  
Donald L Grebner ◽  
John L Willis ◽  
Robert K Grala

Abstract Intensive pine silviculture has become the dominant management paradigm in the southeastern United States. Although productivity has been substantially increased by the combination of cultural, silvicultural, and genetic advancements, wood quality is sometimes sacrificed in intensive silviculture. Extending the optimal rotation allows trees to grow more timber, which may result in the production of better quality sawtimber; however, landowners may require incentives to do so. We simulated loblolly, slash, shortleaf, and longleaf pine for growth and yield using the Forest Vegetation Simulator (FVS) to determine sawtimber price premiums landowners would require to offset the costs associated with delaying the final harvest by 10 to 30 years in even-aged systems. Required incentives increased with the length of harvesting delay beyond the financially optimal rotation age. On medium productivity sites, landowners would be willing to delay the final harvest by 10 years for sawtimber price premiums of $5.06/ton (20.47%) for loblolly, $5.34/ton (21.6%) for slash, $4.56/ton (18.45%) for longleaf, and $6.71/ton (27.14%) shortleaf pine, respectively. Harvest delays of 10 to 20 years were financially justifiable, whereas extensions exceeding 30 years were prohibitively costly for all species. Delaying the optimal harvest could benefit landowners by generating a premium price for their sawtimber while providing important ecosystem services. Study Implications The study findings will provide a baseline resource for forest landowners and managers who are interested in growing higher-quality and larger-diameter pine sawtimber to longer rotation ages to obtain a premium price. The results will also be helpful to primary forest product industries (e.g., sawmills) who prefer high-quality pine sawtimber and are considering offering a price premium for higher-quality pine sawtimber. Findings can be useful for those interested in managing forests for multiple benefits (e.g., timber production, wildlife hunting leases, carbon credits, and other ecosystem service incentives), as managing stands on longer rotations can provide the dual opportunities of receiving price premiums for higher-quality sawtimber while simultaneously generating revenue from nontimber benefits, which may help justify delaying the final harvest. Our findings can also help make policymakers and forest managers more aware of the minimum price premiums required to offset the revenue loss accrued by delaying the final harvest.


2008 ◽  
Vol 32 (3) ◽  
pp. 101-110 ◽  
Author(s):  
John S. Iiames ◽  
Russell Congalton ◽  
Andrew Pilant ◽  
Timothy Lewis

Abstract Quality assessment of satellite-derived leaf area index (LAI) products requires appropriate ground measurements for validation. Since the National Aeronautics and Space Administration launch of Terra (1999) and Aqua (2001), 1-km, 8-day composited retrievals of LAI have been produced for six biome classes worldwide. The evergreen needle leaf biome has been examined at numerous validation sites, but the dominant commercial species in the southeastern United States, loblolly pine (Pinus taeda), has not been investigated. The objective of this research was to evaluate an in situ optical LAI estimation technique combining measurements from the Tracing Radiation and Architecture of Canopies (TRAC) optical sensor and digital hemispherical photography (DHP) in the southeastern US P.taeda forests. Stand-level LAI estimated from allometric regression equations developed from whole-tree harvest data were compared to TRAC–DHP optical LAI estimates at a study site located in the North Carolina Sandhills Region. Within-shoot clumping, (i.e., the needle-to-shoot area ratio [γE]) was estimated at 1.21 and fell within the range of previously reported values for coniferous species (1.2–2.1). The woody-to-total area ratio (α = 0.31) was within the range of other published results (0.11–0.34). Overall, the indirect optical TRAC–DHP method of determining LAI was similar to LAI estimates that had been derived from allometric equations from whole-tree harvests. The TRAC–DHP yielded a value 0.14 LAI units below that retrieved from stand-level whole-tree harvest allometric equations. DHP alone yielded the best LAI estimate, a 0.04 LAI unit differential compared with the same allometrically derived LAI.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Thierry E. Besançon ◽  
Ranjit Riar ◽  
Ronnie W. Heiniger ◽  
Randy Weisz ◽  
Wesley J. Everman

Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1) and dicamba (280 g acid equivalent ha−1) applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.


2012 ◽  
Vol 86 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Andres Susaeta ◽  
Pankaj Lal ◽  
Janaki Alavalapati ◽  
Evan Mercer ◽  
Douglas Carter

1992 ◽  
Vol 22 (6) ◽  
pp. 785-789 ◽  
Author(s):  
Thomas H. Green ◽  
Patrick J. Minogue ◽  
Charles H. Brewer ◽  
Glenn R. Glover ◽  
Dean H. Gjerstad

Absorption and translocation patterns of radio-labelled glyphosate (N-(phosphonomethyl)glycine) were examined in four species of woody plants to determine mechanisms of herbicide tolerance in species common to the southeastern United States. Loblolly pine (Pinustaeda L.) and yaupon (Ilexvomitoria (L.) Ait.), both tolerant to the herbicide, absorbed significantly less glyphosate than did red maple (Acerrubrum L.) or white oak (Quercusalba L.), indicating the importance of foliar absorption as a barrier to glyphosate entry. Although herbicide absorption was similar between the sensitive white oak and the tolerant red maple, white oak accumulated more glyphosate in the roots than did red maple, indicating that translocation patterns also contribute significantly to glyphosate tolerance in some woody species.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 799
Author(s):  
David Dickens ◽  
Lawrence Morris ◽  
David Clabo ◽  
Lee Ogden

Pine straw, the uppermost forest floor layer of undecayed, reddish-brown pine needles, is raked, baled, and sold as a landscaping mulch throughout the southeastern United States. Loblolly (Pinus taeda, L.), longleaf (P. palustris, Mill.), and slash (P. elliottii Engelm. var. elliottii) pine are the three southern pine species commonly raked for pine straw. The value of pine straw as a forest product is large. Private landowner pine straw revenues have steadily increased throughout the southeastern United States over the past two decades and now total more than USD 200 million. Information is limited on the short- or long-term effects of pine straw removal on foliage production or stand growth in southern pine stands. Results from most published studies suggest that annual pine straw raking without fertilization on non-old-field sites reduces straw yields compared to no raking. Old-field sites often do not benefit from fertilization with increased pine straw or wood volume yields. Though fertilization may be beneficial for pine straw production on some sites, understory vegetation presence and disease prevalence may increase following fertilization. This review addresses pine straw removal effects on pine straw production and stand growth parameters based on recent studies and provides fertilization recommendations to maintain or improve pine straw production and stand growth and yield.


Sign in / Sign up

Export Citation Format

Share Document