scholarly journals Rate and Timing Effects of Growth Regulating Herbicides Applications on Grain Sorghum (Sorghum bicolor) Growth and Yield

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Thierry E. Besançon ◽  
Ranjit Riar ◽  
Ronnie W. Heiniger ◽  
Randy Weisz ◽  
Wesley J. Everman

Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1) and dicamba (280 g acid equivalent ha−1) applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.

1985 ◽  
Vol 36 (1) ◽  
pp. 73 ◽  
Author(s):  
GC Wright

An experiment was conducted during the dry season in monsoonal tropical Australia to determine the influence of applied nitrogen (N) and period of inundation during furrow irrigation on the growth and yield of grain sorghum. Water was run in the furrows for 3, 6, 12 and 24 h at all irrigations, which were applied every 7-10 days throughout the season. A sprinkler irrigated crop was used to represent zero inundation. Increasing the period of inundation from 0 to 24 h at each irrigation reduced grain yield by 43.8, 49.5 and 43.2% for crops supplied with 0, 80 and 170 kg N ha-1 respectively. This yield reduction was associated with fewer grains per plant, grain weight having only a small influence on final yield. Air-filled porosity of the soil recovered more slowly as the period of inundation increased. The time taken to reach an air-filled porosity of 0.10 at the 10-20 cm depth interval was highly correlated with grain yield. The results indicate that grain yield is strongly influenced by the duration of waterlogging associated with flood irrigation. To minimize yield losses crops should be irrigated and drained rapidly to reduce the duration and severity of soil anaerobiosis.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 575-578 ◽  
Author(s):  
Barry J. Brecke ◽  
Piotr Tobola

Wild poinsettia is a serious weed in several crops, including peanut, grown in the southeastern United States. A study was conducted over 3 yr at Jay, FL, to characterize the growth and development of wild poinsettia grown from seed collected at Plains, GA; Marianna, FL; and Baton Rouge, LA. Seedlings from each selection were transplanted to the field and were grown either alone or in competition with peanut. Observations made throughout the growing season indicated that the Louisiana selection flowered later, grew to a larger size, produced more leaf area and biomass, and caused greater light attenuation and peanut yield reduction than the other two selections. The Georgia selection produced the smallest plants, least leaf area and biomass, and was least competitive with peanut. The Florida selection was intermediate for these parameters. Wild poinsettia dry biomass production was reduced by 78 to 83% when grown with peanut compared with monoculture wild poinsettia.


1971 ◽  
Vol 11 (51) ◽  
pp. 450 ◽  
Author(s):  
JE Schultz

The effect of CCC on the growth of wheat in South Australia was assessed in three years, 1967 to 1969. A significant grain yield response was obtained only in the wet year, 1968, and was attributed to increased grain weight. It is suggested that the delay in heading and leaf senescence which occurred in CCC-treated plants allowed a greater assimilation of water and nutrients, thus producing the heavier grains. The lack of response in grain yield in 1967 and 1969 was probably due to moisture stress during gram filling. CCC reduced crop height significantly in 1968 and 1969, but not in the very dry year, 1967. There was evidence that split applications would be more useful than the single applications used in these experiments. Although CCC can give small increases in yield under some conditions, it is unlikely to be of commercial importance for wheat-growing in South Australia.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 799
Author(s):  
David Dickens ◽  
Lawrence Morris ◽  
David Clabo ◽  
Lee Ogden

Pine straw, the uppermost forest floor layer of undecayed, reddish-brown pine needles, is raked, baled, and sold as a landscaping mulch throughout the southeastern United States. Loblolly (Pinus taeda, L.), longleaf (P. palustris, Mill.), and slash (P. elliottii Engelm. var. elliottii) pine are the three southern pine species commonly raked for pine straw. The value of pine straw as a forest product is large. Private landowner pine straw revenues have steadily increased throughout the southeastern United States over the past two decades and now total more than USD 200 million. Information is limited on the short- or long-term effects of pine straw removal on foliage production or stand growth in southern pine stands. Results from most published studies suggest that annual pine straw raking without fertilization on non-old-field sites reduces straw yields compared to no raking. Old-field sites often do not benefit from fertilization with increased pine straw or wood volume yields. Though fertilization may be beneficial for pine straw production on some sites, understory vegetation presence and disease prevalence may increase following fertilization. This review addresses pine straw removal effects on pine straw production and stand growth parameters based on recent studies and provides fertilization recommendations to maintain or improve pine straw production and stand growth and yield.


2001 ◽  
Vol 52 (1) ◽  
pp. 127 ◽  
Author(s):  
S. E. Ockerby ◽  
D. J. Midmore ◽  
D. F. Yule

Water stress at anthesis is the major cause of yield reduction or crop failure in grain sorghum [Sorghum bicolor (L.) Moench] in central Queensland. Rainfall is difficult to predict and it is impractical to substantially alter the timing and amount of water stored in the soil, so we focussed on whether crop ontogeny could be managed, ultimately giving farmers some capability to align anthesis with in-crop rain. It is widely considered that a signal, transported from the leaf to the shoot apical meristem, is integral to the onset of panicle initiation and reproductive development. We hypothesised that modifying the leaves may interrupt the signal and cause a delay in the onset of reproductive development. Delays in sorghum anthesis associated with leaf modification treatments applied before panicle initiation were found to be a consequence of delays in panicle initiation. The longest delays in panicle initiation were obtained by twice-weekly defoliation above the second ligule (15–45 days); delays were shorter when plants were defoliated above the third ligule (10–41 days) or when only the fully exposed leaves were removed (0–13 days), depending on genotype. Although panicle initiation was delayed, leaf initiation continued, so extra leaves were produced. Defoliation of fully irrigated plants, however, generally reduced green leaf area, plant dry weight at anthesis, and grain yield, all by 30–50%. The application of ethephon also delayed anthesis, and changed the pattern but not the area of leaf produced, and did not alter grain yield. In rain-fed agriculture, where grain yields are frequently <50% of irrigated controls, delaying panicle initiation by 2 weeks may provide a better rainfall environment during which anthesis and grain-filling will occur. Reductions in green leaf area, although reducing yield potential, may promote a more balanced use of water between vegetative and grain growth. There was sufficient evidence to indicate that defoliation before panicle initiation could provide simple post-sowing management to achieve this scenario.


EDIS ◽  
2013 ◽  
Vol 2013 (10) ◽  
Author(s):  
David L. Wright ◽  
Ann R. Blount ◽  
Ron D. Barnett ◽  
Cheryl L. Mackowiak ◽  
Nicholas Dufault ◽  
...  

Higher wheat prices created the impetus for growing wheat in the southeastern United States. Since increasing amounts of corn have been diverted to ethanol production, there is a shortage of grain for America’s livestock industry. This shortage results in higher wheat and soybean prices. Wheat and soybean have been grown together as a double crop throughout the Southeast for many years, which generally increases profitability compared with growing only one of the crops. Planting wheat followed by cotton, peanut or grain sorghum has also become a common practice. The best management practices for high yields of wheat in the Southeast Coastal Plain are well established. This 3-page fact sheet lists production practices for small grains in Florida. Written by D.L. Wright, A.R. Blount, R.D. Barnett, C.L. Mackowiak, N. Dufault, and J. Marois, and published by the UF Department of Agronomy, October 2013. http://edis.ifas.ufl.edu/ag293


2019 ◽  
Vol 56 (2) ◽  
pp. 239-252 ◽  
Author(s):  
Adriana Derejko ◽  
Marcin Studnicki

SummaryTriticale (Triticosecale Wittmack) is obtained through the crossing of wheat (Triticum ssp.) and rye (Secale cereale L.) and is characterized by high yield potential, good health and grain value, and high tolerance to biotic and abiotic stress. Poland is a very important region for progress in triticale breeding, since it is home to most cultivars, and numerous genetic studies on triticale have been carried out. Despite the tremendous interest in triticale among both breeders and researchers, there are no studies assessing the adaptation of cultivars to environmental conditions across growing seasons. This study was conducted to investigate the influence of cultivar, management, location and growing season on grain yield. At the same time, this approach provides a new way to determine whether there is any dependency between the eight seasons, and to find the cause of the yield response to environmental conditions in a given growing season.


1995 ◽  
Vol 120 (6) ◽  
pp. 956-963 ◽  
Author(s):  
David W. Wolfe ◽  
Daniel T. Topoleski ◽  
Norman A. Gundersheim ◽  
Betsy A. Ingall

A 3-year field study conducted on an Eel silt loam soil (Aquic Udifluvent) compared cabbage (Brussica oleracea L. capitata group), cucumber (Cucumis sativus L.), snap bean (Phaseolus vulgaris L.), and sweet corn (Zea mays L.) for their growth and yield response to an artificially compacted soil layer beginning at about the 10-cm depth. Slower growing cabbage seedlings in compacted plots were more subject to flea beetle damage than the uncompacted controls. Prolonged flooding after heavy rainfall events in compacted areas had a more adverse effect on cabbage and snap bean than on cucumber or sweet corn. Sweet corn showed almost no growth reduction in one of the three years (1993) when relatively high fertilizer rates were applied and leaf nitrogen deficiencies in compacted plots were prevented. Maturity of cabbage, snap bean, and cucumber was delayed, and the average reduction in total marketable yield in (direct-seeded) compacted plots was 73%, 49%, 41%, and 34% for cabbage, snap bean, cucumber and sweet corn, respectively. Yield reduction in transplanted cabbage (evaluated in 1993 only) was 29%. In a controlled environment greenhouse experiment using the same soil type and similar compaction treatment as the field study, compaction caused a reduction in total biomass production of 30% and 14% in snap bean and cabbage, respectively, while cucumber and sweet corn showed no significant response. The growth reductions of snap bean and cabbage in the greenhouse could not be attributed to compaction effects on soil water status, leaf turgor, nutrient deficiency, or net CO, assimilation rate of individual leaves. Root growth of sweet corn was least restricted by the compacted soil layer. The contrast between our field and greenhouse results indicates that the magnitude of yield response to compaction in the field was often associated with species sensitivity to secondary effects of compaction, such as prolonged flooding after rainfall events, reduced nutrient availability or uptake, and prolonged or more severe pest pressure.


Sign in / Sign up

Export Citation Format

Share Document