scholarly journals Molecular population genetics of Sex-lethal (Sxl) in the D. melanogaster species group - a locus that genetically interacts with Wolbachia pipientis in Drosophila melanogaster

Author(s):  
Vanessa L Bauer DuMont ◽  
Simone L White ◽  
Daniel Zinshteyn ◽  
Charles F Aquadro

Abstract Sex-lethal (Sxl) is the sex determination switch in Drosophila, and also plays a critical role in germ-line stem cell (GSC) daughter differentiation in Drosophila melanogaster. Three female-sterile alleles at Sxl in Drosophila melanogaster were previously shown to genetically interact to varying degrees with the maternally inherited endosymbiont Wolbachia pipientis. Given this genetic interaction and W. pipientis’ ability to manipulate reproduction in Drosophila, we carried out a careful study of both the population genetics (within four Drosophila species) and molecular evolutionary analysis (across 20 Drosophila species) of Sxl. Consistent with earlier studies, we find that selective constraint has played a prominent role in Sxl’s molecular evolution within Drosophila, but we also observe patterns that suggest both episodic bursts of protein evolution and recent positive selection at Sxl. The episodic nature of Sxl’s protein evolution is discussed in light of its genetic interaction with W. pipientis.

Author(s):  
Jaclyn E Bubnell ◽  
Paula Fernandez-Begne ◽  
Cynthia K S Ulbing ◽  
Charles F Aquadro

Abstract In Drosophila melanogaster, the maternally inherited endosymbiont Wolbachia pipientis interacts with germline stem cell genes during oogenesis. One such gene, bag of marbles (bam) is the key switch for differentiation and also shows signals of adaptive evolution for protein diversification. These observations have led us to hypothesize that W. pipientis could be driving the adaptive evolution of bam for control of oogenesis. To test this hypothesis, we must understand the specificity of the genetic interaction between bam and W. pipientis. Previously, we documented that the W. pipientis variant, wMel, rescued the fertility of the bamBW hypomorphic mutant as a transheterozygote over a bam null. However, bamBW was generated more than 20 years ago in an uncontrolled genetic background and maintained over a balancer chromosome. Consequently, the chromosome carrying bamBW accumulated mutations that have prevented controlled experiments to further assess the interaction. Here, we used CRISPR/Cas9 to engineer the same single amino acid bam hypomorphic mutation (bamL255F ) and a new bam null disruption mutation into the w1118 isogenic background. We assess the fertility of wildtype bam, bamL255F/bamnull hypomorphic, and bamL255F/bamL255F mutant females, each infected individually with ten W. pipientis wMel variants representing three phylogenetic clades. Overall, we find that all of the W. pipientis variants tested here rescue bam hypomorphic fertility defects with wMelCS-like variants exhibiting the strongest rescue effects. Additionally, these variants did not increase wildtype bam female fertility. Therefore, both bam and W. pipientis interact in genotype-specific ways to modulate female fertility, a critical fitness phenotype.


2019 ◽  
Vol 55 (5) ◽  
pp. 609-612
Author(s):  
Н. В. Адоньева ◽  
Е. В. Бурдина ◽  
Р. А. Быков ◽  
Н. Е. Грунтенко ◽  
И. Ю. Раушенбах

Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 159-169
Author(s):  
Benjamin Boettner ◽  
Phoebe Harjes ◽  
Satoshi Ishimaru ◽  
Michael Heke ◽  
Hong Qing Fan ◽  
...  

Abstract Rap1 belongs to the highly conserved Ras subfamily of small GTPases. In Drosophila, Rap1 plays a critical role in many different morphogenetic processes, but the molecular mechanisms executing its function are unknown. Here, we demonstrate that Canoe (Cno), the Drosophila homolog of mammalian junctional protein AF-6, acts as an effector of Rap1 in vivo. Cno binds to the activated form of Rap1 in a yeast two-hybrid assay, the two molecules colocalize to the adherens junction, and they display very similar phenotypes in embryonic dorsal closure (DC), a process that relies on the elongation and migration of epithelial cell sheets. Genetic interaction experiments show that Rap1 and Cno act in the same molecular pathway during DC and that the function of both molecules in DC depends on their ability to interact. We further show that Rap1 acts upstream of Cno, but that Rap1, unlike Cno, is not involved in the stimulation of JNK pathway activity, indicating that Cno has both a Rap1-dependent and a Rap1-independent function in the DC process.


2009 ◽  
Vol 187 (6) ◽  
pp. 847-858 ◽  
Author(s):  
Gordon Polevoy ◽  
Ho-Chun Wei ◽  
Raymond Wong ◽  
Zsofia Szentpetery ◽  
Yeun Ju Kim ◽  
...  

Successful completion of cytokinesis relies on addition of new membrane, and requires the recycling endosome regulator Rab11, which localizes to the midzone. Despite the critical role of Rab11 in this process, little is known about the formation and composition of Rab11-containing organelles. Here, we identify the phosphatidylinositol (PI) 4-kinase III β Four wheel drive (Fwd) as a key regulator of Rab11 during cytokinesis in Drosophila melanogaster spermatocytes. We show Fwd is required for synthesis of PI 4-phosphate (PI4P) on Golgi membranes and for formation of PI4P-containing secretory organelles that localize to the midzone. Fwd binds and colocalizes with Rab11 on Golgi membranes, and is required for localization of Rab11 in dividing cells. A kinase-dead version of Fwd also binds Rab11 and partially restores cytokinesis to fwd mutant flies. Moreover, activated Rab11 partially suppresses loss of fwd. Our data suggest Fwd plays catalytic and noncatalytic roles in regulating Rab11 during cytokinesis.


2015 ◽  
Vol 5 (12) ◽  
pp. 2843-2856 ◽  
Author(s):  
Florence Gutzwiller ◽  
Catarina R. Carmo ◽  
Danny E. Miller ◽  
Danny W. Rice ◽  
Irene L. G. Newton ◽  
...  

Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


1989 ◽  
Vol 9 (3) ◽  
pp. 875-884 ◽  
Author(s):  
T S Hays ◽  
R Deuring ◽  
B Robertson ◽  
M Prout ◽  
M T Fuller

In this paper we demonstrate that failure to complement between mutations at separate loci can be used to identify genes that encode interacting structural proteins. A mutation (nc33) identified because it failed to complement mutant alleles of the gene encoding the testis-specific beta 2-tubulin of Drosophila melanogaster (B2t) did not map to the B2t locus. We show that this second-site noncomplementing mutation is a missense mutation in alpha-tubulin that results in substitution of methionine in place of valine at amino acid 177. Because alpha- and beta-tubulin form a heterodimer, our results suggest that the genetic interaction, failure to complement, is based on the structural interaction between the protein products of the two genes. Although the nc33 mutation failed to complement a null allele of B2t (B2tn), a deletion of the alpha-tubulin gene to which nc33 mapped complemented B2tn. Thus, the failure to complement appears to require the presence of the altered alpha-tubulin encoded by the nc33 allele, which may act as a structural poison when incorporated into either the tubulin heterodimer or microtubules.


2009 ◽  
Vol 87 (7) ◽  
pp. 635-641 ◽  
Author(s):  
S. Havard ◽  
P. Eslin ◽  
G. Prévost ◽  
G. Doury

Unable to form cellular capsules around large foreign bodies, the species Drosophila subobscura Collin in Gordon, 1936 was previously shown devoid of lamellocytes, the capsule-forming hemocytes in Drosophila melanogaster Meigen, 1830. This unusual case of deficiency in encapsulation ability was remarkable enough to motivate further investigations in phylogenetically related species of the obscura group. Like D. subobscura, the species Drosophila azteca Sturtevant and Dobzhansky, 1936, Drosophila bifasciata Pomini, 1940, Drosophila guanche Monclus, 1976, Drosophila miranda Dobzhansky, 1935, Drosophila persimilis Dobzhansky and Epling, 1944, and Drosophila pseudoobcura Frovola and Astaurov, 1929 were found to be unable to encapsulate large foreign bodies and also to lack lamellocytes. Surprisingly, Drosophila affinis Sturtevant, 1916, Drosophila tolteca Patterson and Mainland, 1944, and Drosophila obscura Fallen, 1823 were capable of mounting cellular capsules, although their encapsulation abilities remained weak. These three species were free of lamellocytes but possessed small pools of never before described “atypical hemocytes” present in the hemolymph when capsules were formed.


Sign in / Sign up

Export Citation Format

Share Document