scholarly journals Sporulation environment drives phenotypic variation in the pathogen Aspergillus fumigatus

Author(s):  
S Earl Kang ◽  
Brandi N Celia ◽  
Douda Bensasson ◽  
Michelle Momany

Abstract Aspergillus fumigatus causes more than 300,000 life-threatening infections annually and is widespread across varied environments with a single colony producing thousands of conidia, genetically-identical dormant spores. Conidia are easily wind-dispersed to new environments where they can germinate and, if inhaled by susceptible hosts, cause disease. Using high-throughput single-cell analysis via flow cytometry we analyzed conidia produced and germinated in nine environmentally- and medically-relevant conditions (complete medium, minimal medium, high temperature, excess copper, excess iron, limited iron, excess salt, excess reactive oxygen species, and limited zinc). We found that germination phenotypes vary among genetically-identical individuals, that the environment of spore production determines the size of spores and the degree of germination heterogeneity, and that the environment of spore production impacts virulence in a Galleria mellonella host.

2019 ◽  
Author(s):  
S. Earl Kang ◽  
Michelle Momany

AbstractAspergillus fumigatus causes more than 300,000 life-threatening infections annually and is widespread across varied environments with a single colony producing thousands of conidia, genetically-identical dormant spores. Conidia are easily wind-dispersed to new environments where they can germinate and, if inhaled by susceptible hosts, cause disease. Using high-throughput, single-cell analysis we show that germination phenotypes vary among genetically-identical individuals and that the environment of spore production determines the degree of germination heterogeneity.


2021 ◽  
Vol 7 (12) ◽  
pp. 1012
Author(s):  
Sana Jemel ◽  
Jacques Guillot ◽  
Kalthoum Kallel ◽  
Grégory Jouvion ◽  
Elise Brisebard ◽  
...  

Aspergillus fumigatus is an environmental filamentous fungus responsible for life-threatening infections in humans and animals. Azoles are the first-line treatment for aspergillosis, but in recent years, the emergence of azole resistance in A. fumigatus has changed treatment recommendations. The objective of this study was to evaluate the efficacy of voriconazole (VRZ) in a Galleria mellonella model of invasive infection due to azole-susceptible or azole-resistant A. fumigatus isolates. We also sought to describe the pharmacokinetics of VRZ in the G. mellonella model. G. mellonella larvae were infected with conidial suspensions of azole-susceptible and azole-resistant isolates of A. fumigatus. Mortality curves were used to calculate the lethal dose. Assessment of the efficacy of VRZ or amphotericin B (AMB) treatment was based on mortality in the lethal model and histopathologic lesions. The pharmacokinetics of VRZ were determined in larval hemolymph. Invasive fungal infection was obtained after conidial inoculation. A dose-dependent reduction in mortality was observed after antifungal treatment with AMB and VRZ. VRZ was more effective at treating larvae inoculated with azole-susceptible A. fumigatus isolates than larvae inoculated with azole-resistant isolates. The concentration of VRZ was maximal at the beginning of treatment and gradually decreased in the hemolymph to reach a Cmin (24 h) between 0.11 and 11.30 mg/L, depending on the dose. In conclusion, G. mellonella is a suitable model for testing the efficacy of antifungal agents against A. fumigatus.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 818-834
Author(s):  
Marie-Fleur Durieux ◽  
Élise Melloul ◽  
Sana Jemel ◽  
Lolita Roisin ◽  
Marie-Laure Dardé ◽  
...  

2021 ◽  
Author(s):  
Ana Cristina Colabardini ◽  
Fang Wang ◽  
Zhengqiang Miao ◽  
Lakhansing Pardeshi ◽  
Clara Valero ◽  
...  

Invasive Pulmonary aspergillosis is a life-threatening infection in immunosuppressed patients caused by the filamentous fungus Aspergillus fumigatus. Chromatin structure regulation is important for genome stability maintenance and has the potential to lead to genome rearrangements driving differences in virulence and pathogenesis of different A. fumigatus isolates. Here, we compared the chromatin activities of the most investigated clinical isolates Af293 and CEA17 and uncovered striking differences in the number, locations and expression of transposable elements. We found evidence for higher genome instability in Af293 as compared to CEA17 and identified a spontaneous Af293 variant that exhibits gross chromosomal alterations including the loss of a 320 kb long segment in chromosome VIII and the amplification of a biosynthetic gene cluster. As a consequence of these re-arrangements, the variant shows increased secondary metabolites production, growth and virulence. Our work emphasizes genome stability heterogeneity as an evolutionary driver of A. fumigatus fitness and virulence.


2014 ◽  
Vol 13 (6) ◽  
pp. 766-775 ◽  
Author(s):  
Timothy D. Smith ◽  
Ana M. Calvo

ABSTRACTAspergillus fumigatusis the leading causative agent of invasive aspergillosis (IA). The number of cases is on the rise, with mortality rates as high as 90% among immunocompromised patients. Molecular genetic studies inA. fumigatuscould provide novel targets to potentially set the basis for antifungal therapies. In the current study, we investigated the role of the transcription factor genemtfAinA. fumigatus. Our results revealed thatmtfAplays a role in the growth and development of the fungus. Deletion or overexpression ofmtfAleads to a slight reduction in colony growth, as well as a reduction in conidiation levels, in the overexpression strain compared to the wild-type strain. Furthermore, production of the secondary metabolite gliotoxin increased whenmtfAwas overexpressed, coinciding with an increase in the transcription levels of the gliotoxin genesgliZandgliPwith respect to the wild type. In addition, our study showed thatmtfAis also necessary for normal protease activity inA. fumigatus; deletion ofmtfAresulted in a reduction of protease activity compared to wild-type levels. Importantly, the absence ofmtfAcaused a decrease in virulence in theGalleria mellonellainfection model, indicating thatmtfAis necessary forA. fumigatuswild-type pathogenesis.


Author(s):  
Zi-Xing Zhong ◽  
Ze-Hua Cui ◽  
Xiao-Jie Li ◽  
Tian Tang ◽  
Zi-Jian Zheng ◽  
...  

Urinary tract infections (UTI) are common infections that can be mild to life threatening. However, increased bacterial resistance and poor patient compliance rates have limited the effectiveness of conventional antibiotic therapies. Here, we investigated the relationship between nitrofurantoin and amikacin against 12 clinical MDR uropathogenic Escherichia coli (UPEC) strains both in vitro and in an experimental Galleria mellonella model. In vitro synergistic effects were observed in all 12 test strains by standard checkerboard and time-kill assays. Importantly, amikacin or nitrofurantoin at half of the clinical doses were not effective in the treatment of UPEC infections in the G. mellonella model but the combination therapy significantly increased G. mellonella survival from infections caused by all 12 study UPEC strains. Taken together, these results demonstrated synergy effects between nitrofurantoin and amikacin against MDR UPEC.


2000 ◽  
Vol 66 (1) ◽  
pp. 320-324 ◽  
Author(s):  
Raymond J. St. Leger ◽  
Steven E. Screen ◽  
Bijan Shams-Pirzadeh

ABSTRACT Aspergillus spp. cause disease in a broad range of organisms, but it is unknown if strains are specialized for particular hosts. We evaluated isolates of Aspergillus flavus,Aspergillus fumigatus, and Aspergillus nidulansfor their ability to infect bean leaves, corn kernels, and insects (Galleria mellonella). Strains of A. flavus did not affect nonwounded bean leaves, corn kernels, or insects at 22°C, but they killed insects following hemocoelic challenge and caused symptoms ranging from moderate to severe in corn kernels and bean leaves injured during inoculation. The pectinase P2c, implicated in aggressive colonization of cotton bolls, is produced by most A. flavus isolates, but its absence did not prevent colonization of bean leaves. Proteases have been implicated in colonization of animal hosts. All A. flavus strains produced very similar patterns of protease isozymes when cultured on horse lung polymers. Quantitative differences in protease levels did not correlate with the ability to colonize insects. In contrast to A. flavus, strains ofA. nidulans and A. fumigatus could not invade living insect or plant tissues or resist digestion by insect hemocytes. Our results indicate that A. flavus has parasitic attributes that are lacking in A. fumigatus and A. nidulans but that individual strains of A. flavus are not specialized to particular hosts.


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Bernadette Ngo Nonga ◽  
Bonaventure Jemea ◽  
Angele O. Pondy ◽  
Daniel Handy Eone ◽  
Marie Claire Bitchong ◽  
...  

An aspergilloma is a well-recognized lesion of the lung caused most of the time by the fungus Aspergillus fumigatus. Its main complication is hemoptysis and has been very rarely associated with tension pneumothorax. We present the case of a 47-year-old man with a history of treated and healed tuberculosis, which was successfully managed in our service for a ruptured right upper lobe complexed aspergilloma, complicated by a massive and tension pneumothorax. The patient underwent thoracotomy and lung resection with quick recovery. Conclusively, although rare, an aspergilloma may rupture and cause a life-threatening air leakage.


2021 ◽  
Author(s):  
Rachita Panda ◽  
Fernanda Vargas E Silva Castanheira ◽  
Jared Schlechte ◽  
Bas GJ Surewaard ◽  
Hanjoo Brian Shim ◽  
...  

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome of respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, a key outstanding question is whether COVID-19 drives a unique program of neutrophil activation or effector functions that contributes to the severe pathogenesis of this pandemic illness, and whether this unique neutrophil response can be targeted to attenuate disease. Using a combination of high-dimensional single cell analysis and ex vivo functional assays of neutrophils from patients with COVID-19 ARDS compared to non-COVID ARDS (caused by bacterial pneumonia), we identified a functionally distinct landscape of neutrophil activation in COVID-19 ARDS that was intrinsically programmed during SARS-CoV-2 infection. Furthermore, neutrophils in COVID-19 ARDS were functionally primed to produce high amounts of neutrophil extracellular traps (NETs). Surprisingly, this unique pathological program of neutrophil priming escaped conventional therapy with dexamethasone, thereby revealing a promising target for adjunctive immunotherapy in severe COVID-19.


Sign in / Sign up

Export Citation Format

Share Document