scholarly journals QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines

Author(s):  
Vander Fillipe de Souza ◽  
Guilherme da Silva Pereira ◽  
Maria Marta Pastina ◽  
Rafael Augusto da Costa Parrella ◽  
Maria Lúcia Ferreira Simeone ◽  
...  

Abstract During the past decade, sweet sorghum (Sorghum bicolor Moench L.) has shown great potential for bioenergy production, especially biofuels. In this study, 223 recombinant inbred lines (RILs) derived from a cross between two sweet sorghum lines (Brandes × Wray) were evaluated in three trials. Single-nucleotide polymorphisms (SNPs) derived from genotyping by sequencing of 272 RILs were used to build a high-density genetic map comprising 3,767 SNPs spanning 1,368.83 cM. Multitrait multiple interval mapping (MT-MIM) was carried out to map quantitative trait loci (QTL) for eight bioenergy traits. A total of 33 QTLs were identified for flowering time, plant height, total soluble solids and sucrose (five QTLs each), fibers (four QTLs), and fresh biomass yield, juice extraction yield, and reducing sugars (three QTLs each). QTL hotspots were found on chromosomes 1, 3, 6, 9, and 10, in addition to other QTLs detected on chromosomes 4 and 8. We observed that 14 out of the 33 mapped QTLs were found in all three trials. Upon further development and validation in other crosses, the results provided by the present study have a great potential to be used in marker-assisted selection in sorghum breeding programs for biofuel production.

2020 ◽  
Author(s):  
Kanokwan Teingtham ◽  
David M. Braun ◽  
Ismail Dweikat

AbstractSweet sorghum (Sorghum bicolor L. Moench) is a promising bioenergy crop. To increase the productivity of this crop, marker-assisted breeding will be important to advance genetic improvement of sweet sorghum. The objective of the present study was to identify quantitative trait loci (QTLs) associated with bioenergy-related traits in sweet sorghum. We used 188 F7 recombinant inbred lines (RILs) derived from a cross between sweet sorghum (Wray) and grain sorghum (Macia). The RILs and their parental lines were grown at two locations in 2012 and 2013. Genotyping-by-sequencing analysis of the RILs allowed the construction of a map with 979 single nucleotide polymorphisms. Using the inclusive composite interval mapping of additive QTLs, major QTLs for flowering time and head moisture content were detected on chromosome 6, and explained 29.45% and 20.65% of the phenotypic variances (PVE), respectively. Major QTLs for plant height (29.51% PVE) and total biomass yield (16.46% PVE) were detected on chromosome 7, and QTLs for stem diameter (9.43% PVE) and 100 seed weight (22.97% PVE) were detected on chromosome 1. A major QTL for brix (39.92% PVE) and grain yield (49.14%) PVE co-localized on chromosome 3, was detected consistently across four environments, and is closely associated with a SWEET sugar transporter gene. Additionally, several other QTLs for brix identified in this study or reported previously were found to be associated with sugar transporter genes. The identified QTLs in this study will help to further understand the underlying genes associated with bioenergy-related traits and could be used for development of molecular markers for marker-assisted selection.


2020 ◽  
Vol 79 (04) ◽  
Author(s):  
Yashpal . ◽  
D. R. Rathod ◽  
Subhash Chandra ◽  
Anil Kumar ◽  
Raju Ratan Yadav ◽  
...  

Quantitative trait loci (QTL) mapping and analyses were conducted for yield and six yield-related traits in soybean using 184 inter-specific recombinant inbred lines (RILs) derived from a cross involving wild type (Glycine soja Sieb. and Zucc.) accession DC2008-1 and cultivated (Glycine max L. Merr.) variety DS9712. A Linkage map of 1639.55 cM length was constructed with 167 SSR markers (65.65% polymorphism) with an average marker interval of 9.82 cM. Using three years phenotypic data 34 QTLs were mapped for 7 traits using Inclusive Composite Interval Mapping approach. The number of QTLs mapped for a trait varied from year to year, however, QTLs for days-to-50% flowering (qDFF5), 100-seed weight (qHSW9-1, qHSW9-2 and qHSW19) and yield (qYLD17) were mapped consistently over the three years of testing. Identified QTLs were validated through single marker analysis in 92 germplasm lines. The study demonstrated the potential of wild type soybean to harness QTLs for yield-related traits. The identified QTLs could be utilized for genetic improvement of soybean through molecular breeding.


2019 ◽  
Vol 157 (9-10) ◽  
pp. 659-675 ◽  
Author(s):  
Xiyu Li ◽  
Hong Xue ◽  
Kaixin Zhang ◽  
Wenbin Li ◽  
Yanlong Fang ◽  
...  

AbstractProtein content (PC) and oil content (OC) are important breeding traits of soybean [Glycine max (L.) Merr.]. Quantitative trait locus (QTL) mapping for PC and OC is important for molecular breeding in soybean; however, the negative correlation between PC and OC influences the accuracy of QTL mapping. In the current study, a four-way recombinant inbred lines (FW-RILs) population comprising 160 lines derived from the cross (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19) was planted in eight different environments and PC and OC measured. Conditional and unconditional QTL analyses were carried out by interval mapping (IM) and inclusive complete IM based on linkage maps of 275 simple sequences repeat markers in a FW-RILs population. This analysis revealed 59 unconditional QTLs and 52 conditional QTLs among the FW-RILs. An analysis of additive effects indicated that the effects of 13 protein QTLs were not related to OC, whereas OC affected the expression of 13 and eight QTLs either partially or completely, respectively. Eight QTLs affecting OC were not influenced by PC, whereas six and 26 QTLs were partially and fully affected by PC, respectively. Among the QTLs detected in the current study, two protein QTLs and five oil QTLs had not been previously reported. These findings will facilitate marker-assisted selection and molecular breeding of soybean.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1130
Author(s):  
Ana López-Malvar ◽  
Rogelio Santiago ◽  
Rosa Ana Malvar ◽  
Daniel Martín ◽  
Inês Pereira dos Santos ◽  
...  

With a high potential to generate biomass, maize stover arises as an outstanding feedstock for biofuel production. Maize stover presents the added advantage of being a multiple exploitation of the crop as a source of food, feed, and energy. In this study, contrasting groups of recombinant inbred lines (RILs) from a maize multiparent advanced generation intercross (MAGIC) population that showed variability for saccharification efficiency were screened by FTIR-ATR spectroscopy to explore compositional differences between high and low saccharification yielders. High and low saccharification efficiency groups differed in cell wall compositional features: high saccharification RILs displayed higher proportions of S subunits, aromatic compounds, and hemicellulose as opposed to low saccharification efficiency groups in which FTIR predicted higher proportions of lignin, more precisely lignin being richer in subunits G, and greater proportions of crystalline cellulose and acetyl methyl esters. The application of FTIR-ATR spectroscopy in this material allowed us to obtain a rapid and broad vision of cell wall compositional features in contrasting groups of saccharification efficiency. These results helped us to deepen our knowledge into the relationship between cell wall composition and biorefining potential; they also allowed us to establish new targets for future research regarding lignocellulosic bioconversion.


2020 ◽  
Author(s):  
Toshiyuki Sakai ◽  
Akira Abe ◽  
Motoki Shimizu ◽  
Ryohei Terauchi

SummaryStudying epistatic gene interactions is important in understanding genetic architecture of complex traits in organisms. However, due to an enormous number of gene combinations to be analyzed, detection of epistatic gene-gene interactions has been computationally demanding. Here, we show a simple approach RIL-StEp, specialized to Recombinant Inbred Lines (RILs), to study epistasis using single nucleotide polymorphisms (SNPs) information of the genome. We applied the method to reveal epistasis affecting rice seed hull color phenotype, and successfully identified gene pairs that presumably control seed hull color. This method has a potential to enhancing our understanding of genetic architecture of various traits.


2019 ◽  
Vol 20 (21) ◽  
pp. 5432 ◽  
Author(s):  
Pawan Kumar Singh ◽  
Sukhwinder Singh ◽  
Zhiying Deng ◽  
Xinyao He ◽  
Zakaria Kehel ◽  
...  

Tan spot (TS) and Septoria nodorum blotch (SNB) induced by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, cause significant yield losses and adversely affect grain quality. The objectives of this study were to decipher the genetics and map the resistance to TS and SNB in the PBW343/Kenya Nyangumi (KN) population comprising 204 F6 recombinant inbred lines (RILs). Disease screening was performed at the seedling stage under greenhouse conditions. TS was induced by P. tritici-repentis isolate MexPtr1 while SNB by P. nodorum isolate MexSN1. Segregation pattern of the RILs indicated that resistance to TS and SNB in this population was quantitative. Diversity Array Technology (DArTs) and simple sequence repeats (SSRs) markers were used to identify the quantitative trait loci (QTL) for the diseases using inclusive composite interval mapping (ICIM). Seven significant additive QTLs for TS resistance explaining 2.98 to 23.32% of the phenotypic variation were identified on chromosomes 1A, 1B, 5B, 7B and 7D. For SNB, five QTLs were found on chromosomes 1A, 5A, and 5B, explaining 5.24 to 20.87% of the phenotypic variation. The TS QTL on 1B chromosome coincided with the pleiotropic adult plant resistance (APR) gene Lr46/Yr29/Pm39. This is the first report of the APR gene Lr46/Yr29/Pm39 contributing to TS resistance.


2019 ◽  
Vol 79 (01S) ◽  
Author(s):  
M. A. Saleem ◽  
G. K. Naidu ◽  
H. L. Nadaf ◽  
P. S. Tippannavar

Spodoptera litura an important insect pest of groundnut causes yield loss up to 71% in India. Though many effective chemicals are available to control Spodoptera, host plant resistance is the most desirable, economic and eco-friendly strategy. In the present study, groundnut mini core (184), recombinant inbred lines (318) and elite genotypes (44) were studied for their reaction to Spodoptera litura under hot spot location at Dharwad. Heritable component of variation existed for resistance to Spodoptera in groundnut mini core, recombinant inbred lines and elite genotypes indicating scope for selection of Spodoptera resistant genotypes. Only 29 (15%) genotypes belonging to hypogaea, fastigiata and hirsuta botanical varieties under mini core set, 15 transgressive segregants belonging to fastigiata botanical variety among 318 recombinant inbred lines and three genotypes belonging to hypogaea and fastigiata botanical varieties under elite genotypes showed resistance to Spodoptera litura with less than 10% leaf damage. Negative correlation existed between resistance to Spodoptera and days to 50 per cent flowering indicating late maturing nature of resistant genotypes. Eight resistant genotypes (ICG 862, ICG 928, ICG 76, ICG 2777, ICG 5016, ICG 12276, ICG 4412 and ICG 9905) under hypogaea botanical variety also had significantly higher pod yield. These diverse genotypes could serve as potential donors for incorporation of Spodoptera resistance in groundnut.


Sign in / Sign up

Export Citation Format

Share Document