scholarly journals Database of glutamate gated chloride (GluCl) subunits across 125 nematode species: patterns of gene accretion and sequence diversification

Author(s):  
Damien M O’Halloran

Abstract Glutamate Gated Chloride (GluCl) channels belong to the Cys-loop receptor superfamily. GluCl channels are activated by glutamate (Glu) and form substrates for the anti-parasitic drugs from the avermectin family. GluCl channels are pentameric, and each subunit contains an N-terminal extracellular domain that binds Glu and four helical transmembrane domains (TMs), which contain binding sites for avermectin drugs. In order to provide more insight into phylum-wide patterns of GluCl subunit gene expansion and sequence diversity across nematodes, we have developed a database of predicted GluCl subunit genes from 125 nematode species. Our analysis into this dataset described assorted patterns of species-specific GluCl gene counts across different nematodes as well as sequence diversity in key residues thought to be involved in avermectin binding.

2012 ◽  
Vol 109 (38) ◽  
pp. 15235-15240 ◽  
Author(s):  
Markus Englert ◽  
Shuangluo Xia ◽  
Chiaki Okada ◽  
Akiyoshi Nakamura ◽  
Ved Tanavde ◽  
...  

The RtcB protein has recently been identified as a 3′-phosphate RNA ligase that directly joins an RNA strand ending with a 2′,3′-cyclic phosphate to the 5′-hydroxyl group of another RNA strand in a GTP/Mn2+-dependent reaction. Here, we report two crystal structures of Pyrococcus horikoshii RNA-splicing ligase RtcB in complex with Mn2+ alone (RtcB/ Mn2+) and together with a covalently bound GMP (RtcB-GMP/Mn2+). The RtcB/ Mn2+ structure (at 1.6 Å resolution) shows two Mn2+ ions at the active site, and an array of sulfate ions nearby that indicate the binding sites of the RNA phosphate backbone. The structure of the RtcB-GMP/Mn2+ complex (at 2.3 Å resolution) reveals the detailed geometry of guanylylation of histidine 404. The critical roles of the key residues involved in the binding of the two Mn2+ ions, the four sulfates, and GMP are validated in extensive mutagenesis and biochemical experiments, which also provide a thorough characterization for the three steps of the RtcB ligation pathway: (i) guanylylation of the enzyme, (ii) guanylyl-transfer to the RNA substrate, and (iii) overall ligation. These results demonstrate that the enzyme’s substrate-induced GTP binding site and the putative reactive RNA ends are in the vicinity of the binuclear Mn2+ active center, which provides detailed insight into how the enzyme-bound GMP is tansferred to the 3′-phosphate of the RNA substrate for activation and subsequent nucleophilic attack by the 5′-hydroxyl of the second RNA substrate, resulting in the ligated product and release of GMP.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Komal Soni ◽  
Georg Kempf ◽  
Karen Manalastas-Cantos ◽  
Astrid Hendricks ◽  
Dirk Flemming ◽  
...  

AbstractThe eukaryotic signal recognition particle (SRP) contains an Alu domain, which docks into the factor binding site of translating ribosomes and confers translation retardation. The canonical Alu domain consists of the SRP9/14 protein heterodimer and a tRNA-like folded Alu RNA that adopts a strictly ‘closed’ conformation involving a loop-loop pseudoknot. Here, we study the structure of the Alu domain from Plasmodium falciparum (PfAlu), a divergent apicomplexan protozoan that causes human malaria. Using NMR, SAXS and cryo-EM analyses, we show that, in contrast to its prokaryotic and eukaryotic counterparts, the PfAlu domain adopts an ‘open’ Y-shaped conformation. We show that cytoplasmic P. falciparum ribosomes are non-discriminative and recognize both the open PfAlu and closed human Alu domains with nanomolar affinity. In contrast, human ribosomes do not provide high affinity binding sites for either of the Alu domains. Our analyses extend the structural database of Alu domains to the protozoan species and reveal species-specific differences in the recognition of SRP Alu domains by ribosomes.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jothi K. Yuvaraj ◽  
Rebecca E. Roberts ◽  
Yonathan Sonntag ◽  
Xiao-Qing Hou ◽  
Ewald Grosse-Wilde ◽  
...  

Abstract Background Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. Results We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. Conclusions The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.


2010 ◽  
Vol 79 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Kamonchanok Sansuk ◽  
Xavier Deupi ◽  
Ivan R. Torrecillas ◽  
Aldo Jongejan ◽  
Saskia Nijmeijer ◽  
...  

1998 ◽  
Vol 111 (7) ◽  
pp. 985-994 ◽  
Author(s):  
J.M. Fayard ◽  
C. Tessier ◽  
J.F. Pageaux ◽  
M. Lagarde ◽  
C. Laugier

We have previously demonstrated that pancreatic PLA2 (PLA2-I) stimulates the proliferation of UIII cells, a stromal cell line derived from normal rat uterus. In order to gain further insight into the mechanism of action of PLA2-I, we have investigated the intracellular processing of PLA2-I. Either highly proliferative or growth arrested UIII cells were analyzed. Growth arrested cells were obtained from a contact inhibited monolayer or from aristolochic acid-treated cultures. Using cellular fractionation, western blotting, immunocytochemistry and confocal microscopy, we demonstrate that endogenous PLA2-I was mainly located in the nucleus in highly proliferative cells whereas its location was cytoplasmic in non proliferative cells. When non confluent UIII cells were incubated with nanomolar amounts of exogenous PLA2-I, the enzyme was internalized and, in the majority of cells, appeared within the nucleus. Both internalization and nuclear location of exogenous PLA2-I were suppressed by the addition of aristolochic acid to the culture medium. Binding experiments performed on purified nuclear preparations showed the presence of specific cooperative binding sites for PLA2-I. Collectively our data suggest that the proliferative effect exerted by pancreatic PLA2 in UIII cells is mediated by a direct interaction of the enzyme at the nuclear level. Putative mechanisms and targets are discussed.


2017 ◽  
Vol 89 ◽  
pp. 145
Author(s):  
Alexandra Papp ◽  
Marcell Cserhalmi ◽  
Ádám I. Csincsi ◽  
Barbara Uzonyi ◽  
David Ermert ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 312
Author(s):  
Tina V. A. Hansen ◽  
Heinz Sager ◽  
Céline E. Toutain ◽  
Elise Courtot ◽  
Cédric Neveu ◽  
...  

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


Biochemistry ◽  
2011 ◽  
Vol 50 (24) ◽  
pp. 5507-5520 ◽  
Author(s):  
Heli Elovaara ◽  
Heidi Kidron ◽  
Vimal Parkash ◽  
Yvonne Nymalm ◽  
Eva Bligt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document