scholarly journals THE UNDERLYING BASES OF GENE EXPRESSION DIFFERENCES IN STABLE TRANSFORMANTS OF THE ROSY LOCUS IN DROSOPHILA MELANOGASTER

Genetics ◽  
1986 ◽  
Vol 113 (2) ◽  
pp. 265-285
Author(s):  
Stephen B Daniels ◽  
Margaret McCarron ◽  
Carol Love ◽  
Stephen H Clark ◽  
Arthur Chovnick

ABSTRACT This report represents a continuation of our laboratory's effort to understand the major phenomena associated with P-M dysgenesis-mediated transformation in Drosophila. A group of stable transformants are characterized with respect to rosy gene expression. Stable, true-breeding, line-specific variants in gene expression are described. These are shown to be associated with single transposons present in each line, and the lines are free of functional P elements. The effects on expression are cis-acting, and there are no identifiable rosy DNA sequence lesions associated with these transposons. Evidence is presented that demonstrates that two features of the transformation experimental system are responsible for such variation. The first relates to the fact that the transposons insert at numerous genomic sites. Both heterochromatic and euchromatic position effects are characterized. The second relates to the fact that transformation involves dysgenic mobilization of a P-element transposon. This process is mutagenic, and such a mutation is characterized.

Genetics ◽  
1994 ◽  
Vol 138 (4) ◽  
pp. 1127-1135
Author(s):  
T R Heslip ◽  
R B Hodgetts

Abstract Targeted transposition is the replacement of one P element with another. We are exploiting this unique property of P elements to study the complex regulatory domain of the Dopa decarboxylase (Ddc) gene in Drosophila melanogaster. P element constructs targeted to the same site in the genome will be subjected to the same position effect. This allows the subtle effects typical of most mutations in the Ddc regulatory region to be measured in the absence of the variable influences of position effects which are associated with the current method of germline transformation. We have investigated some of the parameters affecting targeted transposition of a Ddc transposon, P[Ddc], into a P element allele at the vestigial locus. These events were detected by an increased mutant vg phenotype. The location of the donor transposon in cis or in trans to the target had little effect on the frequency of targeting. Likewise, the mobility of different donor elements, as measured by their rate of transposition to a different chromosome, varied nearly 20-fold, while the rate of targeted transposition was very similar between them. All targeted alleles were precise replacements of the target P element by P[Ddc], but in several cases the donor was inserted in the opposite orientation. The targeted alleles could be described as the result of a replicative, conversion-like event.


Genetics ◽  
1995 ◽  
Vol 141 (3) ◽  
pp. 1061-1074 ◽  
Author(s):  
R R Roseman ◽  
E A Johnson ◽  
C K Rodesch ◽  
M Bjerke ◽  
R N Nagoshi ◽  
...  

Abstract P elements are widely used as insertional mutagens to tag genes, facilitating molecular cloning and analyses. We modified a P element so that it carried two copies of the suppressor of Hairy-wing [su(Hw)] binding regions isolated from the gypsy transposable element. This transposon was mobilized, and the genetic consequences of its insertion were analyzed. Gene expression can be altered by the su(Hw) protein as a result of blocking the interaction between enhancer/silencer elements and their promoter. These effects can occur over long distances and are general. Therefore, a composite transposon (SUPor-P for suppressor-P element) combines the mutagenic efficacy of the gypsy element with the controllable transposition of P elements. We show that, compared to standard P elements, this composite transposon causes an expanded repertoire of mutations and produces alleles that are suppressed by su(Hw) mutations. The large number of heterochromatic insertions obtained is unusual compared to other insertional mutagenesis procedures, indicating that the SUPor-P transposon may be useful for studying the structural and functional properties of heterochromatin.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
D Smith ◽  
J Wohlgemuth ◽  
B R Calvi ◽  
I Franklin ◽  
W M Gelbart

Abstract P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 417-423
Author(s):  
Wayne K Versaw ◽  
Robert L Metzenberg

Abstract A transgenic position effect that causes activator-independent gene expression has been described previously for three Neurospora crassa phosphate-repressible genes. We report analogous findings for two additional positively regulated genes, qa-2  + and ars-1  +, indicating that such position effects are not limited to genes involved in phosphorus metabolism. In addition, we have characterized a number of mutants that display activator-independent gene expression. Each of these mutants contains a chromosomal rearrangement with one breakpoint located in the 5’-upstream region of the affected gene. This suggests that the rearrangements are associated with activator-independent gene expression and that these cis-acting mutations may represent a position effect similar to that responsible for rendering some transgenes independent of their transcriptional activators. We suggest that positively regulated genes in N.  crassa are normally held in a transcriptionally repressed state by a cis-acting mechanism until specifically activated. Disruption of this cis-acting mechanism, either by random integration of a gene by transformation or by chromosomal rearrangement, renders these genes independent or partly independent of the transcriptional activator on which they normally depend.


1998 ◽  
Vol 71 (1) ◽  
pp. 21-30 ◽  
Author(s):  
RICHARD M. BADGE ◽  
JOHN F. Y. BROOKFIELD

We have discovered, in an inbred line (Loua) of Drosophila melanogaster from Zaïre, a third chromosome showing unusual P element repression. Repression of P element transposition by this chromosome, named Loua3, is dominant zygotic and has three unusual properties. Firstly, its repression of the gonadal dysgenesis caused by a strong P haplotype is strongly temperature-dependent, being most evident at higher rearing temperatures. Secondly, subdivision of Loua3 by recombination abolishes repression: the effect is apparently a function of the intact chromosome. Finally, Loua3 also diminishes somatic lethality when chromosomes carrying many ‘ammunition’ elements (Birmingham2) are exposed to the constitutive transposase source Δ2-3(99B). The chromosome has 17 P elements, none full-length, located in at least 12 dispersed positions.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


1987 ◽  
Vol 7 (4) ◽  
pp. 1545-1548
Author(s):  
M R Kelley ◽  
S Kidd ◽  
R L Berg ◽  
M W Young

P elements move about the Drosophila melanogaster genome in a nonrandom fashion, preferring some chromosomal targets for insertion over others (J. C. J. Eeken, F. H. Sobels, V. Hyland, and A. P. Schalet, Mutat. Res. 150:261-275, 1985; W. R. Engels, Annu. Rev. Genet. 17:315-344, 1983; M. D. Golubovsky, Y. N. Ivanov, and M. M. Green, Proc. Natl. Acad. Sci. USA 74:2973-2975, 1977; M. J. Simmons and J. K. Lim, Proc. Natl. Acad. Sci. USA 77:6042-6046, 1980). Some of this specificity may be due to recognition of a particular DNA sequence in the target DNA; derivatives of an 8-base-pair consensus sequence are occupied by these transposable elements at many different chromosomal locations (K. O'Hare and G. M. Rubin, Cell 34:25-36, 1983). An additional level of specificity of P-element insertions is described in this paper. Of 14 mutations induced in the complex locus Notch by hybrid dysgenesis, 13 involved P-element insertions at or near the transcription start site of the gene. This clustering was not seen in other transposable element-induced mutations of Notch. DNA sequences homologous to the previously described consensus target for P-element insertion are not preferentially located in this region of the locus. The choice of a chromosomal site for integration appears to be based on more subtle variations in chromosome structure that are probably associated with activation or expression of the target gene.


Development ◽  
1988 ◽  
Vol 104 (Supplement) ◽  
pp. 85-93 ◽  
Author(s):  
Stephen J. Poole ◽  
Thomas B. Kornberg

The engrailed gene is required for segmentation of the Drosophila embryo and is expressed in cells constituting the posterior developmental compartments. In mutant embryos lacking engrailed function, portions of the cuticular pattern in each segment are deleted, resulting in fusion of adjacent denticle bands. Using P-element-mediated transposition, we generated flies that express the engrailed gene under the control of an hsp70 promoter, and found that ectopic, heat-shock-induced, engrailed expression caused pattern defects similar to those in embryos lacking engrailed function. Sensitivity to heat shock was only during the cellular blastoderm and early gastrulation periods. This window of sensitivity corresponds to the time when wildtype engrailed protein localizes into segmentally reiterated stripes and represents only a small portion of the normal period of engrailed gene expression.


Sign in / Sign up

Export Citation Format

Share Document