Homologous recombination involving a large heterology in Escherichia coli.

Genetics ◽  
1988 ◽  
Vol 119 (4) ◽  
pp. 759-769
Author(s):  
K Yamamoto ◽  
N Takahashi ◽  
H Yoshikura ◽  
I Kobayashi

Abstract Recombination between two different deletion alleles of a gene (neo) for neomycin and kanamycin resistance was studied in an Escherichia coli sbcA- recB-C- strain. The two homologous regions were in an inverted orientation on the same plasmid molecule. Kanamycin-resistant plasmids were selected and analyzed. The rate of recombination to form kanamycin-resistant plasmids was decreased by mutations in the recE, recF and recJ genes, but was not decreased by a mutation in the recA gene. It was found that these plasmids often possessed one wild-type kanamycin-resistant allele (neo+) while the other neo allele was still in its original (deletion) form. Among kanamycin-resistant plasmids with one wild-type and one parental allele it was often found that the region between the inverted repeats had been flipped (turned around) with respect to sites outside the inverted repeats. These results were interpreted as follows. Gene conversion, analogous to gene conversion in eukaryotic meiosis, is responsible for a unidirectional transfer of information from one neo deletion allele to the other. The flipping of the region between the inverted repeats is interpreted as analogous to the crossing over associated with gene conversion in eukaryotic meiosis. In contrast with a rec+ strain, these products cannot be explained by two rounds of reciprocal crossing over involving a dimeric form as an intermediate. In the accompanying paper we present evidence that gene conversion by double-strand gap repair takes place in the same E. coli strain.

Genetics ◽  
1975 ◽  
Vol 81 (4) ◽  
pp. 615-629
Author(s):  
Christopher W Lawrence ◽  
Fred Sherman ◽  
Mary Jackson ◽  
Richard A Gilmore

ABSTRACT We have investigated the order of the four genes cyc1, rad7, SUP4, and cdc8 which form a tightly linked cluster on the right arm of chromosome X in the yeast Saccharomyces cerevisiae. Crossing over and coconversion data from tetrad analysis established the gene order to be centromere–cyc1–rad7–SUP4. Also cdc8 appeared to be distal to SUP4 on the basis of crossovers that were associated with conversion of SUP4. The frequencies of recombination and the occurrence of coconversions suggest that these four genes are contiguous or at least nearly so. Gene-conversion frequencies for several cyc1 alleles were studied, including cyc1–1, a deletion of the whole gene that extends into the rad7 locus. The cyc1–1 deletion was found to be capable of conversion, though at a frequency some fivefold less than the other alleles studied, and both 3:1 and 1:3 events were detected. In general 1:3 and 3:1 conversion events were equally frequent at all loci studied, and approximately 50% of conversions were accompanied by reciprocal recombination for flanking markers. The orientation of the cyc1 gene could not be clearly deduced from the behavior of the distal marker SUP4 in wild-type recombinants that arose from diploids heteroallelic for cyc1 mutations.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 587-595 ◽  
Author(s):  
A J Rattray ◽  
L S Symington

Abstract An intrachromosomal recombination assay that monitors events between alleles of the ade2 gene oriented as inverted repeats was developed. Recombination to adenine prototrophy occurred at a rate of 9.3 x 10(-5)/cell/generation. Of the total recombinants, 50% occurred by gene conversion without crossing over, 35% by crossover and 15% by crossover associated with conversion. The rate of recombination was reduced 3,000-fold in a rad52 mutant, but the distribution of residual recombination events remained similar to that seen in the wild type strain. In rad51 mutants the rate of recombination was reduced only 4-fold. In this case, gene conversion events unassociated with a crossover were reduced 18-fold, whereas crossover events were reduced only 2.5-fold. A rad51 rad52 double mutant strain showed the same reduction in the rate of recombination as the rad52 mutant, but the distribution of events resembled that seen in rad51. From these observations it is concluded that (i) RAD52 is required for high levels of both gene conversions and reciprocal crossovers, (ii) that RAD51 is not required for intrachromosomal crossovers, and (iii) that RAD51 and RAD52 have different functions, or that RAD52 has functions in addition to those of the Rad51/Rad52 protein complex.


1994 ◽  
Vol 25 (5) ◽  
pp. 472-474 ◽  
Author(s):  
Viera Vlčková ◽  
Luba Černáková ◽  
Eva Farkašová ◽  
Jela Brozmanová

1972 ◽  
Vol 18 (6) ◽  
pp. 909-915 ◽  
Author(s):  
A. P. Singh ◽  
K.-J. Cheng ◽  
J. W. Costerton ◽  
E. S. Idziak ◽  
J. M. Ingram

The site of the cell barrier to actinomycin-D uptake was studied using a wild-type Escherichia coli strain P and its cell envelope-defective filamentous mutants, strains 6γ and 12γ, both of which 'leak' β-galactosidase and alkaline phosphatase into the medium during growth indicating both membrane and cell-wall defects. Actinomycin-D entered the cells of these two mutant strains as evidenced by the inhibition of both 14C-uracil incorporation and synthesis of the induced β-galactosidase system. Under similar conditions, no inhibition occurred in the wild-type strain and its sucrose-lysozyme prepared spheroplasts. Actinomycin-D did, however, inhibit the above-mentioned systems in the wild-type sucrose-lysozyme spheroplasts prepared in the presence of 2 mM EDTA. The experimental data indicate that although the cell wall may act as a primary barrier or sieve to actinomycin-D, the cytoplasmic membrane should be considered the final and determinative barrier to this antibiotic.


Genetics ◽  
1994 ◽  
Vol 136 (2) ◽  
pp. 607-617
Author(s):  
A R Godwin ◽  
R M Liskay

Abstract We examined the effects of insertion mutations on intrachromosomal recombination. A series of mouse L cell lines carrying mutant herpes simplex virus thymidine kinase (tk) heteroalleles was generated; these lines differed in the nature of their insertion mutations. In direct repeat lines with different large insertions in each gene, there was a 20-fold drop in gene conversion rate and only a five-fold drop in crossover rate relative to the analogous rates in lines with small insertions in each gene. Surprisingly, in direct repeat lines carrying the same large insertion in each gene, there was a larger drop in both types of recombination. When intrachromosomal recombination between inverted repeat tk genes with different large insertions was examined, we found that the rate of gene conversion dropped five-fold relative to small insertions, while the rate of crossing over was unaffected. The differential effects on conversion and crossing over imply that gene conversion is more sensitive to insertion mutation size. Finally, the fraction of gene conversions associated with a crossover increased from 2% for inverted repeats with small insertions to 18% for inverted repeats with large insertions. One interpretation of this finding is that during intrachromosomal recombination in mouse cells long conversion tracts are more often associated with crossing over.


2001 ◽  
Vol 69 (3) ◽  
pp. 1528-1535 ◽  
Author(s):  
Christal C. Bowman ◽  
John D. Clements

ABSTRACT Two bacterial products that have been demonstrated to function as mucosal adjuvants are cholera toxin (CT), produced by various strains of Vibrio cholerae, and the heat-labile enterotoxin (LT) produced by some enterotoxigenic strains of Escherichia coli. Although LT and CT have many features in common, they are clearly distinct molecules with biochemical and immunologic differences which make them unique. The goal of this study was to determine the basis for these biological differences by constructing and characterizing chimeric CT-LT molecules. Toxin gene fragments were subcloned to create two constructs, each expressing the enzymatically active A subunit of one toxin and the receptor binding B subunit of the other toxin. These hybrid toxins were purified, and the composition and assembly of CT A subunit (CT-A)-LT B subunit (LT-B) and LT A subunit (LT-A)-CT B subunit (CT-B) were confirmed. Hybrids were evaluated for enzymatic activity, as measured by the accumulation of cyclic AMP in Caco-2 cells, and the enterotoxicity of each toxin was assessed in a patent-mouse assay. The results demonstrated that LT-A–CT-B induces the accumulation of lower levels of cyclic AMP and has less enterotoxicity than either wild-type toxin or the other hybrid. Nonetheless, this hybrid retains adjuvant activity equivalent to or greater than that of either wild-type toxin or the other hybrid when used in conjunction with tetanus toxoid for intranasal immunization of BALB/c mice. Importantly, the ability of LT to induce a type 1 cytokine response was found to be a function of LT-A. Specifically, LT-A–CT-B was able to augment the levels of antigen-specific gamma interferon (IFN-γ) and interleukin 5 to levels comparable to those achieved with native LT, while CT-A–LT-B and native CT both produced lower levels of antigen-specific IFN-γ. Thus, these toxin hybrids possess unique biological characteristics and provide information about the basis for differences in the biological activities observed for CT and LT.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 519-534 ◽  
Author(s):  
N Rudin ◽  
E Sugarman ◽  
J E Haber

Abstract We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 5-16 ◽  
Author(s):  
S Harris ◽  
K S Rudnicki ◽  
J E Haber

Abstract The pma1-105 mutation reduces the activity of the yeast plasma membrane H(+)-ATPase and causes cells to be both low pH and ammonium ion sensitive and resistant to the antibiotic hygromycin B. Revertants that can grow at pH 3.0 and on ammonium-containing plates frequently arise by ectopic recombination between pma1-105 and PMA2, a diverged gene that shares 85% DNA sequence identity with PMA1. The gene conversion tracts of revertants of pma1-105 were determined by DNA sequencing the hybrid PMA1::PMA2 genes. Gene conversion tracts ranged from 18-774 bp. The boundaries of these replacements were short (3-26 bp) regions of sequences that were identical between PMA1 and PMA2. These boundaries were not located at the regions of greatest shared identity between the two PMA genes. Similar results were obtained among low pH-resistant revertants of another mutation, pma1-147. One gene conversion was obtained in which the resulting PMA1::PMA2 hybrid was low pH-resistant but still hygromycin B-resistant. This partially active gene differs from a wild-type revertant only by the presence of two PMA2-encoded amino acid substitutions. Thus, some regions of PMA2 are not fully interchangeable with PMA1. We have also compared the efficiency of recombination between pma1-105 and either homeologous PMA2 sequence or homologous PMA1 donor sequences inserted at the same location. PMA2 x pma1-105 recombination occurred at a rate approximately 75-fold less than PMA1 x pma1-105 events. The difference in homology between the interacting sequences did not affect the proportion of gene conversion events associated with a cross-over, as in both cases approximately 5% of the Pma+ recombinants had undergone reciprocal translocations between the two chromosomes carrying pma1-105 and the donor PMA sequences. Reciprocal translocations were identified by a simple and generally useful nutritional test.


Sign in / Sign up

Export Citation Format

Share Document