scholarly journals Mutations in the sup-38 gene of Caenorhabditis elegans suppress muscle-attachment defects in unc-52 mutants.

Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 431-442 ◽  
Author(s):  
E J Gilchrist ◽  
D G Moerman

Abstract Mutations in the unc-52 locus of Caenorhabditis elegans have been classified into three different groups based on their complex pattern of complementation. These mutations result in progressive paralysis (class 1 mutations) or in lethality (class 2 and 3 mutations). The paralysis exhibited by animals carrying class 1 mutations is caused by disruption of the myofilaments at their points of attachment to the cell membrane in the body wall muscle cells. We have determined that mutations of this class also have an effect on the somatic gonad, and this may be due to a similar disruption in the myoepithelial sheath cells of the uterus, or in the uterine muscle cells. Mutations that suppress the body wall muscle defects of the class 1 unc-52 mutations have been isolated, and they define a new locus, sup-38. Only the muscle disorganization of the Unc-52 mutants is suppressed; the gonad abnormalities are not, and the suppressors do not rescue the lethal phenotype of the class 2 and class 3 mutations. The suppressor mutations on their own exhibit a variable degree of gonad and muscle disorganization. Putative null sup-38 mutations cause maternal-effect lethality which is rescued by a wild-type copy of the locus in the zygote. These loss-of-function mutations have no effect on the body wall muscle structure.

2020 ◽  
Author(s):  
Shoichiro Ono ◽  
Kanako Ono

AbstractMulticellular organisms have multiple genes encoding calponins and calponin-related proteins, and some of these are known to regulate actin cytoskeletal dynamics and contractility. However, functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, has an overlapping function with UNC-87 to maintain actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro. CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad, where UNC-87 is also expressed. unc-87 mutation causes cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone causes no detectable phenotypes. However, simultaneous depletion of clik-1 and unc-87 caused sterility due to ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundles actin filaments. However, CLIK-1 binds to actin filaments without bundling them and is antagonistic to UNC-87 in filament bundling. UNC-87 and CLIK-1 share common functions to inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. Thus, partially redundant functions of UNC-87 and CLIK-1 in ovulation is likely mediated by their common actin-regulatory activities, but their distinct activities in actin bundling suggest that they also have different biological functions.


2020 ◽  
Vol 295 (34) ◽  
pp. 12014-12027
Author(s):  
Shoichiro Ono ◽  
Kanako Ono

Multicellular organisms have multiple genes encoding calponins and calponin-related proteins, some of which are known to regulate actin cytoskeletal dynamics and contractility. However, the functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, functionally overlaps with UNC-87 in maintaining actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro. We found that CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad in which UNC-87 is also expressed. unc-87 mutation caused cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone caused no detectable phenotypes. However, simultaneous clik-1 and unc-87 depletion caused sterility because of ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundled actin filaments, whereas CLIK-1 bound to actin filaments without bundling them and antagonized UNC-87–mediated filament bundling. We noticed that UNC-87 and CLIK-1 share common functions that inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. In conclusion, partially redundant functions of UNC-87 and CLIK-1 in ovulation are likely mediated by their common actin-regulatory activities, but their distinct actin-bundling activities suggest that they also have different biological functions.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


1987 ◽  
Vol 105 (6) ◽  
pp. 2763-2770 ◽  
Author(s):  
J P Ardizzi ◽  
H F Epstein

The nematode Caenorhabditis elegans contains two major groups of muscle cells that exhibit organized sarcomeres: the body wall and pharyngeal muscles. Several additional groups of muscle cells of more limited mass and spatial distribution include the vulval muscles of hermaphrodites, the male sex muscles, the anal-intestinal muscles, and the gonadal sheath of the hermaphrodite. These muscle groups do not exhibit sarcomeres and therefore may be considered smooth. Each muscle cell has been shown to have a specific origin in embryonic cell lineages and differentiation, either embryonically or postembryonically (Sulston, J. E., and H. R. Horvitz. 1977. Dev. Biol. 56:110-156; Sulston, J. E., E. Schierenberg, J. White, and J. N. Thomson. 1983. Dev. Biol. 100:64-119). Each muscle type exhibits a unique combination of lineage and onset of differentiation at the cellular level. Biochemically characterized monoclonal antibodies to myosin heavy chains A, B, C, and D and to paramyosin have been used in immunochemical localization experiments. Paramyosin is detected by immunofluorescence in all muscle cells. Myosin heavy chains C and D are limited to the pharyngeal muscle cells, whereas myosin heavy chains A and B are localized not only within the sarcomeres of body wall muscle cells, as reported previously, but to the smooth muscle cells of the minor groups as well. Myosin heavy chains A and B and paramyosin proteins appear to be compatible with functionally and structurally distinct muscle cell types that arise by multiple developmental pathways.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170376 ◽  
Author(s):  
Andrey Palyanov ◽  
Sergey Khayrulin ◽  
Stephen D. Larson

To better understand how a nervous system controls the movements of an organism, we have created a three-dimensional computational biomechanical model of the Caenorhabditis elegans body based on real anatomical structure. The body model is created with a particle system–based simulation engine known as Sibernetic, which implements the smoothed particle–hydrodynamics algorithm. The model includes an elastic body-wall cuticle subject to hydrostatic pressure. This cuticle is then driven by body-wall muscle cells that contract and relax, whose positions and shape are mapped from C. elegans anatomy, and determined from light microscopy and electron micrograph data. We show that by using different muscle activation patterns, this model is capable of producing C. elegans -like behaviours, including crawling and swimming locomotion in environments with different viscosities, while fitting multiple additional known biomechanical properties of the animal.  This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


2011 ◽  
Vol 22 (13) ◽  
pp. 2258-2269 ◽  
Author(s):  
Shoichiro Ono ◽  
Kazumi Nomura ◽  
Sadae Hitosugi ◽  
Domena K. Tu ◽  
Jocelyn A. Lee ◽  
...  

Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78–null mutant is homozygous viable and shows only weak phenotypes in embryos. Here we report that a second AIP1 gene, aipl-1 (AIP1-like gene-1), has overlapping function with unc-78, and that depletion of the two AIP1 isoforms causes embryonic lethality. A single aipl-1–null mutation did not cause a detectable phenotype. However, depletion of both unc-78 and aipl-1 arrested development at late embryonic stages due to severe disorganization of sarcomeric actin filaments in body wall muscle. In vitro, both AIPL-1 and UNC-78 preferentially cooperated with UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament disassembly but not with UNC-60A, a nonmuscle ADF/cofilin. AIPL-1 is expressed in embryonic muscle, and forced expression of AIPL-1 in adult muscle compensated for the function of UNC-78. Thus our results suggest that enhancement of actin filament disassembly by ADF/cofilin and AIP1 proteins is critical for embryogenesis.


1991 ◽  
Vol 114 (3) ◽  
pp. 465-479 ◽  
Author(s):  
R Francis ◽  
R H Waterston

In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle.


2002 ◽  
Vol 159 (2) ◽  
pp. 337-348 ◽  
Author(s):  
Maëlle Jospin ◽  
Vincent Jacquemond ◽  
Marie-Christine Mariol ◽  
Laurent Ségalat ◽  
Bruno Allard

Caenorhabditis elegans is a powerful model system widely used to investigate the relationships between genes and complex behaviors like locomotion. However, physiological studies at the cellular level have been restricted by the difficulty to dissect this microscopic animal. Thus, little is known about the properties of body wall muscle cells used for locomotion. Using in situ patch clamp technique, we show that body wall muscle cells generate spontaneous spike potentials and develop graded action potentials in response to injection of positive current of increasing amplitude. In the presence of K+ channel blockers, membrane depolarization elicited Ca2+ currents inhibited by nifedipine and exhibiting Ca2+-dependent inactivation. Our results give evidence that the Ca2+ channel involved belongs to the L-type class and corresponds to EGL-19, a putative Ca2+ channel originally thought to be a member of this class on the basis of genomic data. Using Ca2+ fluorescence imaging on patch-clamped muscle cells, we demonstrate that the Ca2+ transients elicited by membrane depolarization are under the control of Ca2+ entry through L-type Ca2+ channels. In reduction of function egl-19 mutant muscle cells, Ca2+ currents displayed slower activation kinetics and provided a significantly smaller Ca2+ entry, whereas the threshold for Ca2+ transients was shifted toward positive membrane potentials.


2001 ◽  
Vol 152 (6) ◽  
pp. 1313-1320 ◽  
Author(s):  
Shoichiro Ono

Assembly and maintenance of myofibrils require dynamic regulation of the actin cytoskeleton. In Caenorhabditis elegans, UNC-60B, a muscle-specific actin depolymerizing factor (ADF)/cofilin isoform, is required for proper actin filament assembly in body wall muscle (Ono, S., D.L. Baillie, and G.M. Benian. 1999. J. Cell Biol. 145:491–502). Here, I show that UNC-78 is a homologue of actin-interacting protein 1 (AIP1) and functions as a novel regulator of actin organization in myofibrils. In unc-78 mutants, the striated organization of actin filaments is disrupted, and large actin aggregates are formed in the body wall muscle cells, resulting in defects in their motility. Point mutations in unc-78 alleles change conserved residues within different WD repeats of the UNC-78 protein and cause less severe phenotypes than a deletion allele, suggesting that these mutations partially impair the function of UNC-78. UNC-60B is normally localized in the diffuse cytoplasm and to the myofibrils in wild type but mislocalized to the actin aggregates in unc-78 mutants. Similar Unc-78 phenotypes are observed in both embryonic and adult muscles. Thus, AIP1 is an important regulator of actin filament organization and localization of ADF/cofilin during development of myofibrils.


2000 ◽  
Vol 113 (11) ◽  
pp. 2003-2010 ◽  
Author(s):  
N.J. Szewczyk ◽  
J.J. Hartman ◽  
S.J. Barmada ◽  
L.A. Jacobson

A myosin-lacZ fusion, expressed in 103 muscle cells of Caenorhabditis elegans, reports on how proteolysis in muscle is controlled by neural and intramuscular signals. Upon acute starvation, the fusion protein is degraded in the posterior 63 cells of the body-wall muscle, but remains stable in 32 anterior body-wall muscles and 8 vulval muscle cells. This distinction correlates with differences in the innervation of these cells. Reporter protein in the head and vulval muscles becomes labile upon genetic ‘denervation’ in mutants that have blocks in pre-synaptic synthesis or release of acetylcholine (ACh) or post-synaptic reception at nicotinic ACh receptors (nAChR), whereas protein in all 103 muscles is stabilized by the nicotinic agonist levamisole in the absence of ACh production. Levamisole does not stabilize muscle protein in nAChR mutants that are behaviorally resistant to levamisole. Neural inputs thus exert negative control over the proteolytic process in muscle by stimulating muscle nicotinic ACh receptors.


Sign in / Sign up

Export Citation Format

Share Document