Genetic defects in acetylcholine signalling promote protein degradation in muscle cells of Caenorhabditis elegans

2000 ◽  
Vol 113 (11) ◽  
pp. 2003-2010 ◽  
Author(s):  
N.J. Szewczyk ◽  
J.J. Hartman ◽  
S.J. Barmada ◽  
L.A. Jacobson

A myosin-lacZ fusion, expressed in 103 muscle cells of Caenorhabditis elegans, reports on how proteolysis in muscle is controlled by neural and intramuscular signals. Upon acute starvation, the fusion protein is degraded in the posterior 63 cells of the body-wall muscle, but remains stable in 32 anterior body-wall muscles and 8 vulval muscle cells. This distinction correlates with differences in the innervation of these cells. Reporter protein in the head and vulval muscles becomes labile upon genetic ‘denervation’ in mutants that have blocks in pre-synaptic synthesis or release of acetylcholine (ACh) or post-synaptic reception at nicotinic ACh receptors (nAChR), whereas protein in all 103 muscles is stabilized by the nicotinic agonist levamisole in the absence of ACh production. Levamisole does not stabilize muscle protein in nAChR mutants that are behaviorally resistant to levamisole. Neural inputs thus exert negative control over the proteolytic process in muscle by stimulating muscle nicotinic ACh receptors.

1991 ◽  
Vol 114 (3) ◽  
pp. 465-479 ◽  
Author(s):  
R Francis ◽  
R H Waterston

In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle.


1987 ◽  
Vol 105 (6) ◽  
pp. 2763-2770 ◽  
Author(s):  
J P Ardizzi ◽  
H F Epstein

The nematode Caenorhabditis elegans contains two major groups of muscle cells that exhibit organized sarcomeres: the body wall and pharyngeal muscles. Several additional groups of muscle cells of more limited mass and spatial distribution include the vulval muscles of hermaphrodites, the male sex muscles, the anal-intestinal muscles, and the gonadal sheath of the hermaphrodite. These muscle groups do not exhibit sarcomeres and therefore may be considered smooth. Each muscle cell has been shown to have a specific origin in embryonic cell lineages and differentiation, either embryonically or postembryonically (Sulston, J. E., and H. R. Horvitz. 1977. Dev. Biol. 56:110-156; Sulston, J. E., E. Schierenberg, J. White, and J. N. Thomson. 1983. Dev. Biol. 100:64-119). Each muscle type exhibits a unique combination of lineage and onset of differentiation at the cellular level. Biochemically characterized monoclonal antibodies to myosin heavy chains A, B, C, and D and to paramyosin have been used in immunochemical localization experiments. Paramyosin is detected by immunofluorescence in all muscle cells. Myosin heavy chains C and D are limited to the pharyngeal muscle cells, whereas myosin heavy chains A and B are localized not only within the sarcomeres of body wall muscle cells, as reported previously, but to the smooth muscle cells of the minor groups as well. Myosin heavy chains A and B and paramyosin proteins appear to be compatible with functionally and structurally distinct muscle cell types that arise by multiple developmental pathways.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170376 ◽  
Author(s):  
Andrey Palyanov ◽  
Sergey Khayrulin ◽  
Stephen D. Larson

To better understand how a nervous system controls the movements of an organism, we have created a three-dimensional computational biomechanical model of the Caenorhabditis elegans body based on real anatomical structure. The body model is created with a particle system–based simulation engine known as Sibernetic, which implements the smoothed particle–hydrodynamics algorithm. The model includes an elastic body-wall cuticle subject to hydrostatic pressure. This cuticle is then driven by body-wall muscle cells that contract and relax, whose positions and shape are mapped from C. elegans anatomy, and determined from light microscopy and electron micrograph data. We show that by using different muscle activation patterns, this model is capable of producing C. elegans -like behaviours, including crawling and swimming locomotion in environments with different viscosities, while fitting multiple additional known biomechanical properties of the animal.  This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


2020 ◽  
Vol 12 (6) ◽  
pp. 150-160 ◽  
Author(s):  
Samuel Sofela ◽  
Sarah Sahloul ◽  
Sukanta Bhattacharjee ◽  
Ambar Bose ◽  
Ushna Usman ◽  
...  

Abstract Type 2 diabetes is the most common metabolic disease, and insulin resistance plays a role in the pathogenesis of the disease. Because completely functional mitochondria are necessary to obtain glucose-stimulated insulin from pancreatic beta cells, dysfunction of mitochondrial oxidative pathway could be involved in the development of diabetes. As a simple animal model, Caenorhabditis elegans renders itself to investigate such metabolic mechanisms because it possesses insulin/insulin-like growth factor-1 signaling pathway similar to that in humans. Currently, the widely spread agarose pad-based immobilization technique for fluorescence imaging of the mitochondria in C. elegans is laborious, batchwise, and does not allow for facile handling of the worm. To overcome these technical challenges, we have developed a single-channel microfluidic device that can trap a C. elegans and allow to image the mitochondria in body wall muscles accurately and in higher throughput than the traditional approach. In specific, our microfluidic device took advantage of the proprioception of the worm to rotate its body in a microfluidic channel with an aspect ratio above one to gain more space for its undulation motion that was favorable for quantitative fluorescence imaging of mitochondria in the body wall muscles. Exploiting this unique feature of the microfluidic chip-based immobilization and fluorescence imaging, we observed a significant decrease in the mitochondrial fluorescence intensity under hyperglycemic conditions, whereas the agarose pad-based approach did not show any significant change under the same conditions. A machine learning model trained with these fluorescence images from the microfluidic device could classify healthy and hyperglycemic worms at high accuracy. Given this significant technological advantage, its easiness of use and low cost, our microfluidic imaging chip could become a useful immobilization tool for quantitative fluorescence imaging of the body wall muscles in C. elegans.


2000 ◽  
Vol 148 (2) ◽  
pp. 375-384 ◽  
Author(s):  
Wanyuan Ao ◽  
Dave Pilgrim

In the nematode Caenorhabditis elegans, animals mutant in the gene encoding the protein product of the unc-45 gene (UNC-45) have disorganized muscle thick filaments in body wall muscles. Although UNC-45 contains tetratricopeptide repeats (TPR) as well as limited similarity to fungal proteins, no biochemical role has yet been found. UNC-45 reporters are expressed exclusively in muscle cells, and a functional reporter fusion is localized in the body wall muscles in a pattern identical to thick filament A-bands. UNC-45 colocalizes with myosin heavy chain (MHC) B in wild-type worms as well as in temperature-sensitive (ts) unc-45 mutants, but not in a mutant in which MHC B is absent. Surprisingly, UNC-45 localization is also not seen in MHC B mutants, in which the level of MHC A is increased, resulting in near-normal muscle thick filament structure. Thus, filament assembly can be independent of UNC-45. UNC-45 shows a localization pattern identical to and dependent on MHC B and a function that appears to be MHC B–dependent. We propose that UNC-45 is a peripheral component of muscle thick filaments due to its localization with MHC B. The role of UNC-45 in thick filament assembly seems restricted to a cofactor for assembly or stabilization of MHC B.


2020 ◽  
Author(s):  
Anna Meledin ◽  
Xiaohui Li ◽  
Elena Matveev ◽  
Boaz Gildor ◽  
Ofer Katzir ◽  
...  

A hallmark of muscle development is that myoblasts fuse to form myofibers. However, smooth muscles and cardiomyocytes do not generally fuse. In C. elegans, the body wall muscles (BWMs), the physiological equivalents of skeletal muscles, are mononuclear. Here, to determine what would be the consequences of fusing BWMs, we express the cell-cell fusogen EFF-1 in these cells. We find that EFF-1 induces paralysis and dumpy phenotypes. To determine whether EFF-1-induced muscle fusion results in these pathologies we injected viruses pseudotyped with AFF-1, a paralog of EFF-1, into the pseudocoelom of C. elegans. When these engineered viruses encounter cells expressing EFF-1 or AFF-1 they are able to infect them as revealed by GFP expression from the viral genome. We find that AFF-1 viruses can fuse to EFF-1-expressing muscles revealing multinucleated fibers that cause paralysis and abnormal muscle morphogenesis. Thus, aberrant fusion of otherwise non-syncytial muscle cells may lead to pathological conditions.Graphical abstractSignificance statementMost cells are individual units that do not mix their cytoplasms. However, some cells fuse to become multinucleated in placenta, bones and muscles. In most animals, muscles are formed by myofibers that originate by cell-cell fusion. In contrast, in C. elegans the body wall muscles are mononucleated cells that mediate worm-like movement. EFF-1 and AFF-1 fusogens mediate physiological cell fusion in C. elegans. By ectopically expressing EFF-1 in body wall muscles we induce their fusion resulting in behavioral and morphological deleterious effects, revealing possible causes of congenital myopathies in humans. Using AFF-1-coated pseudoviruses we infect EFF-1-expressing muscle cells retargeting viral infection into these cells. We suggest that virus retargeting can be utilized to study myogenesis, neuronal regeneration, gamete fusion and screens for new fusogens in different organisms. In addition, our virus retargeting system can be used in gene-therapy, viral-based oncolysis and to study viral-host interactions.


Development ◽  
1987 ◽  
Vol 100 (3) ◽  
pp. 365-382 ◽  
Author(s):  
E.M. Hedgecock ◽  
J.G. Culotti ◽  
D.H. Hall ◽  
B.D. Stern

The Caenorhabditis elegans epidermis comprises 78 cells which cover the external surface of the embryo as a single cell layer. These cells secrete the cuticle from their exterior faces and support the body wall muscles and most of the nervous system on their interior faces. The epidermal cells arise by autonomous embryonic cell lineages but show regulative interactions after their assembly into an epithelium. It is believed that the various epidermal cells express different kinds or amounts of surface molecules that govern their mutual assembly and also guide the attachments and migrations of the underlying body muscles and neurones. The first muscles and neurones may in turn express new surface molecules that refine later cell movements. Mutations in some 30 known genes disrupt the movements of cells or axons along the body wall.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 431-442 ◽  
Author(s):  
E J Gilchrist ◽  
D G Moerman

Abstract Mutations in the unc-52 locus of Caenorhabditis elegans have been classified into three different groups based on their complex pattern of complementation. These mutations result in progressive paralysis (class 1 mutations) or in lethality (class 2 and 3 mutations). The paralysis exhibited by animals carrying class 1 mutations is caused by disruption of the myofilaments at their points of attachment to the cell membrane in the body wall muscle cells. We have determined that mutations of this class also have an effect on the somatic gonad, and this may be due to a similar disruption in the myoepithelial sheath cells of the uterus, or in the uterine muscle cells. Mutations that suppress the body wall muscle defects of the class 1 unc-52 mutations have been isolated, and they define a new locus, sup-38. Only the muscle disorganization of the Unc-52 mutants is suppressed; the gonad abnormalities are not, and the suppressors do not rescue the lethal phenotype of the class 2 and class 3 mutations. The suppressor mutations on their own exhibit a variable degree of gonad and muscle disorganization. Putative null sup-38 mutations cause maternal-effect lethality which is rescued by a wild-type copy of the locus in the zygote. These loss-of-function mutations have no effect on the body wall muscle structure.


2021 ◽  
Author(s):  
Zu Soh ◽  
Hiroki Yamashita ◽  
Michiyo Suzuki ◽  
Kazuma Sakamoto ◽  
Toshio Tsuji

Abstract Caenorhabditis elegans can generate locomotion under various environments with completely different drag levels. Therefore, animals should have strategies for adapting to the changes in the dynamics of locomotion imposed by various environments. We hypothesized that co-contraction between the ventral and dorsal body wall muscles plays such a role and validated the presence of a co-contraction strategy through both experimental and mathematical modeling approaches. To this end, the fluorescence of calcium ion (Ca2+) corresponding to a part of activities of the body wall muscles were measured. The results indicated a significant difference in the co-fluorescence rate between the animals moving in low- and high-drag environments. The contribution of co-contraction to the dynamics of locomotion was then analysed using a body dynamics model. The simulation results suggested that co-contraction allows the dominance of body stiffness over viscous drag so that the phase difference between the local curvature of the body and muscle activities can be maintained under different environmental drag levels. Therefore, co-contraction can be an effective strategy for adapting to environmental drag that changes the dynamics of locomotion.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


Sign in / Sign up

Export Citation Format

Share Document