scholarly journals Identification of genes required for normal pheromone-induced cell polarization in Saccharomyces cerevisiae.

Genetics ◽  
1994 ◽  
Vol 136 (4) ◽  
pp. 1287-1296 ◽  
Author(s):  
J Chenevert ◽  
N Valtz ◽  
I Herskowitz

Abstract In response to mating pheromones, cells of the yeast Saccharomyces cerevisiae adopt a polarized "shmoo" morphology, in which the cytoskeleton and proteins involved in mating are localized to a cell-surface projection. This polarization is presumed to reflect the oriented morphogenesis that occurs between mating partners to facilitate cell and nuclear fusion. To identify genes involved in pheromone-induced cell polarization, we have isolated mutants defective in mating to an enfeebled partner and studied a subset of these mutants. The 34 mutants of interest are proficient for pheromone production, arrest in response to pheromone, mate to wild-type strains, and exhibit normal cell polarity during vegetative growth. The mutants were divided into classes based on their morphological responses to mating pheromone. One class is unable to localize cell-surface growth in response to mating factor and instead enlarges in a uniform manner. These mutants harbor special alleles of genes required for cell polarization during vegetative growth, BEM1 and CDC24. Another class of mutants forms bilobed, peanut-like shapes when treated with pheromone and defines two genes, PEA1 and PEA2. PEA1 is identical to SPA2. A third class forms normally shaped but tiny shmoos and defines the gene TNY1. A final group of mutants exhibits apparently normal shmoo morphology. The nature of their mating defect is yet to be determined. We discuss the possible roles of these gene products in establishing cell polarity during mating.

2002 ◽  
Vol 383 (10) ◽  
pp. 1475-1480 ◽  
Author(s):  
M. Bagnat ◽  
K. Simons

Abstract Cellular membranes contain many types and species of lipids. One of the most important functional consequences of this heterogeneity is the existence of microdomains within the plane of the membrane. Sphingolipid acyl chains have the ability of forming tightly packed platforms together with sterols. These platforms or lipid rafts constitute segregation and sorting devices into which proteins specifically associate. In budding yeast, Saccharomyces cerevisiae, lipid rafts serve as sorting platforms for proteins destined to the cell surface. The segregation capacity of rafts also provides the basis for the polarization of proteins at the cell surface during mating. Here we discuss some recent findings that stress the role of lipid rafts as key players in yeast protein sorting and cell polarity.


1990 ◽  
Vol 111 (1) ◽  
pp. 131-142 ◽  
Author(s):  
A E Adams ◽  
D I Johnson ◽  
R M Longnecker ◽  
B F Sloat ◽  
J R Pringle

Budding in the yeast Saccharomyces cerevisiae involves a polarized deposition of new cell surface material that is associated with a highly asymmetric disposition of the actin cytoskeleton. Mutants defective in gene CDC24, which are unable to bud or establish cell polarity, have been of great interest with regard to both the mechanisms of cellular morphogenesis and the mechanisms that coordinate cell-cycle events. To gain further insights into these problems, we sought additional mutants with defects in budding. We report here that temperature-sensitive mutants defective in genes CDC42 and CDC43, like cdc24 mutants, fail to bud but continue growth at restrictive temperature, and thus arrest as large unbudded cells. Nearly all of the arrested cells appear to begin nuclear cycles (as judged by the occurrence of DNA replication and the formation and elongation of mitotic spindles), and many go on to complete nuclear division, supporting the hypothesis that the events associated with budding and those of the nuclear cycle represent two independent pathways within the cell cycle. The arrested mutant cells display delocalized cell-surface deposition associated with a loss of asymmetry of the actin cytoskeleton. CDC42 maps distal to the rDNA on chromosome XII and CDC43 maps near lys5 on chromosome VII.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1045-1058
Author(s):  
Dewald van Dyk ◽  
Guy Hansson ◽  
Isak S Pretorius ◽  
Florian F Bauer

Abstract In the yeast Saccharomyces cerevisiae, the transition from a nutrient-rich to a nutrient-limited growth medium typically leads to the implementation of a cellular adaptation program that results in invasive growth and/or the formation of pseudohyphae. Complete depletion of essential nutrients, on the other hand, leads either to entry into a nonbudding, metabolically quiescent state referred to as G0 in haploid strains or to meiosis and sporulation in diploids. Entry into meiosis is repressed by the transcriptional regulator Rme1p, a zinc-finger-containing DNA-binding protein. In this article, we show that Rme1p positively regulates invasive growth and starch metabolism in both haploid and diploid strains by directly modifying the transcription of the FLO11 (also known as MUC1) and STA2 genes, which encode a cell wall-associated protein essential for invasive growth and a starch-degrading glucoamylase, respectively. Genetic evidence suggests that Rme1p functions independently of identified signaling modules that regulate invasive growth and of other transcription factors that regulate FLO11 and that the activation of FLO11 is dependent on the presence of a promoter sequence that shows significant homology to identified Rme1p response elements (RREs). The data suggest that Rme1p functions as a central switch between different cellular differentiation pathways.


1993 ◽  
Vol 120 (5) ◽  
pp. 1203-1215 ◽  
Author(s):  
K Kuchler ◽  
H G Dohlman ◽  
J Thorner

STE6 gene product is required for secretion of the lipopeptide mating pheromone a-factor by Saccharomyces cerevisiae MATa cells. Radiolabeling and immunoprecipitation, either with specific polyclonal antibodies raised against a TrpE-Ste6 fusion protein or with mAbs that recognize c-myc epitopes in fully functional epitope-tagged Ste6 derivatives, demonstrated that Ste6 is a 145-kD phosphoprotein. Subcellular fractionation, various extraction procedures, and immunoblotting showed that Ste6 is an intrinsic plasma membrane-associated protein. The apparent molecular weight of Ste6 was unaffected by tunicamycin treatment, and the radiolabeled protein did not bind to concanavalin A, indicating that Ste6 is not glycosylated and that glycosylation is not required either for its membrane delivery or its function. The amino acid sequence of Ste6 predicts two ATP-binding folds; correspondingly, Ste6 was photoaffinity-labeled specifically with 8-azido-[alpha-32P]ATP. Indirect immunofluorescence revealed that in exponentially growing MATa cells, the majority of Ste6 showed a patchy distribution within the plasma membrane, but a significant fraction was found concentrated in a number of vesicle-like bodies subtending the plasma membrane. In contrast, in MATa cells exposed to the mating pheromone alpha-factor, which markedly induced Ste6 production, the majority of Ste6 was incorporated into the plasma membrane within the growing tip of the elongating cells. The highly localized insertion of this transporter may establish pronounced anisotropy in a-factor secretion from the MATa cell, and thereby may contribute to the establishment of the cell polarity which restricts partner selection and cell fusion during mating to one MAT alpha cell.


2016 ◽  
Vol 44 (2) ◽  
pp. 474-478 ◽  
Author(s):  
Chris MacDonald ◽  
Robert C. Piper

Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeast Saccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway.


2021 ◽  
Author(s):  
Emily J. Yang ◽  
Wolfgang M Pernice ◽  
Liza A. Pon

SummaryBabies are born young, largely independent of the age of their mothers. Mother-daughter age asymmetry in yeast is achieved, in part, by inheritance of higher-functioning mitochondria by daughter cells and retention of some high-functioning mitochondria in mother cells. The mitochondrial F-box protein, Mfb1p, tethers mitochondria at both poles in a cell cycle-regulated manner: it localizes to and anchors mitochondria to the mother cell tip throughout the cell cycle, and to the bud tip prior to cytokinesis. Here, we report that cell polarity and polarized localization of Mfb1p decline with age in S. cerevisiae. Moreover, deletion of BUD1/RSR1, a Ras protein required for cytoskeletal polarization during asymmetric yeast cell division, results in depolarized Mfb1p localization, defects in mitochondrial distribution and quality control, and reduced replicative lifespan. Our results demonstrate a role for the polarity machinery in lifespan through modulating Mfb1 function in asymmetric inheritance of mitochondria during yeast cell division.


Sign in / Sign up

Export Citation Format

Share Document