mating factor
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 4)

H-INDEX

26
(FIVE YEARS 0)

2021 ◽  
Vol 22 (21) ◽  
pp. 11889
Author(s):  
Zuzana Rosenbergová ◽  
Zuzana Hegyi ◽  
Miroslav Ferko ◽  
Natália Andelová ◽  
Martin Rebroš

The effect of the deletion of a 57 bp native signal sequence, which transports the nascent protein through the endoplasmic reticulum membrane in plants, on improved AtTGG1 plant myrosinase production in Pichia pastoris was studied. Myrosinase was extracellularly produced in a 3-liter laboratory fermenter using α-mating factor as the secretion signal. After the deletion of the native signal sequence, both the specific productivity (164.8 U/L/h) and volumetric activity (27 U/mL) increased more than 40-fold compared to the expression of myrosinase containing its native signal sequence in combination with α-mating factor. The deletion of the native signal sequence resulted in slight changes in myrosinase properties: the optimum pH shifted from 6.5 to 7.0 and the maximal activating concentration of ascorbic acid increased from 1 mM to 1.5 mM. Kinetic parameters toward sinigrin were determined: 0.249 mM (Km) and 435.7 U/mg (Vmax). These results could be applied to the expression of other plant enzymes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253476
Author(s):  
Lukas Verhülsdonk ◽  
Hans Georg Mannherz ◽  
Markus Napirei

Soluble nucleases of the deoxyribonuclease 1 (DNase1) family facilitate DNA and chromatin disposal (chromatinolysis) during certain forms of cell differentiation and death and participate in the suppression of anti-nuclear autoimmunity as well as thrombotic microangiopathies caused by aggregated neutrophil extracellular traps. Since a systematic and direct comparison of the specific activities and properties of the secretory DNase1 family members is still missing, we expressed and purified recombinant murine DNase1 (rmDNase1), DNase1-like 2 (rmDNase1L2) and DNase1-like 3 (rmDNase1L3) using Pichia pastoris. Employing different strategies for optimizing culture and purification conditions, we achieved yields of pure protein between ~3 mg/l (rmDNase1L2 and rmDNase1L3) and ~9 mg/l (rmDNase1) expression medium. Furthermore, we established a procedure for post-expressional maturation of pre-mature DNase still bound to an unprocessed tri-N-glycosylated pro-peptide of the yeast α-mating factor. We analyzed glycosylation profiles and determined specific DNase activities by the hyperchromicity assay. Additionally, we evaluated substrate specificities under various conditions at equimolar DNase isoform concentrations by lambda DNA and chromatin digestion assays in the presence and absence of heparin and monomeric skeletal muscle α-actin. Our results suggest that due to its biochemical properties mDNase1L2 can be regarded as an evolutionary intermediate isoform of mDNase1 and mDNase1L3. Consequently, our data show that the secretory DNase1 family members complement each other to achieve optimal DNA degradation and chromatinolysis under a broad spectrum of biological conditions.


2021 ◽  
Author(s):  
Katherine M Paine ◽  
Gabrielle B Ecclestone ◽  
Chris MacDonald

Cell surface membrane proteins perform diverse and critical functions and are spatially and temporally regulated by membrane trafficking pathways. Although perturbations in these pathways underlie many pathologies, our understanding of these pathways at a mechanistic level remains incomplete. Using yeast as a model, we have developed an assay that reports on the surface activity of the Fur4 uracil permease in uracil auxotroph strains grown in the presence of limited uracil. This assay was used to screen a haploid deletion library that identified mutants with both diminished and enhanced comparative growth in restricted uracil media. Factors identified, including various multi-subunit complexes, were enriched for membrane trafficking and transcriptional functions, in addition to various uncharacterised genes. Bioinformatic analysis of expression profiles from many strains lacking identified transcription factors required for efficient uracil-scavenging revealed they control expression of other uracil-scavenging factors, in addition to membrane trafficking genes essential for viability, and therefore not represented in the screen. Finally, we performed a secondary mating factor secretion screen to functionally categorise factors implicated in uracil-scavenging, most of which are conserved throughout evolution.


2021 ◽  
Vol 22 (3) ◽  
pp. 1157
Author(s):  
Pablo Aza ◽  
Felipe de Salas ◽  
Gonzalo Molpeceres ◽  
David Rodríguez-Escribano ◽  
Iñigo de la Fuente ◽  
...  

Laccases secreted by saprotrophic basidiomycete fungi are versatile biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the sole requirement. Saccharomyces cerevisiae is a preferred host for engineering fungal laccases. To assist the difficult secretion of active enzymes by yeast, the native signal peptide is usually replaced by the preproleader of S. cerevisiae alfa mating factor (MFα1). However, in most cases, only basal enzyme levels are obtained. During directed evolution in S. cerevisiae of laccases fused to the α-factor preproleader, we demonstrated that mutations accumulated in the signal peptide notably raised enzyme secretion. Here we describe different protein engineering approaches carried out to enhance the laccase activity detected in the liquid extracts of S. cerevisiae cultures. We demonstrate the improved secretion of native and engineered laccases by using the fittest mutated α-factor preproleader obtained through successive laccase evolution campaigns in our lab. Special attention is also paid to the role of protein N-glycosylation in laccase production and properties, and to the introduction of conserved amino acids through consensus design enabling the expression of certain laccases otherwise not produced by the yeast. Finally, we revise the contribution of mutations accumulated in laccase coding sequence (CDS) during previous directed evolution campaigns that facilitate enzyme production.


2017 ◽  
Vol 28 (5) ◽  
pp. 576-586 ◽  
Author(s):  
Nina Ly ◽  
Martha S. Cyert

Calcineurin, the conserved Ca2+/calmodulin-activated phosphatase, is required for viability during prolonged exposure to pheromone and acts through multiple substrates to down-regulate yeast pheromone signaling. Calcineurin regulates Dig2 and Rod1/Art4 to inhibit mating-induced gene expression and activate receptor internalization, respectively. Recent systematic approaches identified Rga2, a GTPase-activating protein (GAP) for the Cdc42 Rho-type GTPase, as a calcineurin substrate. Here we establish a physiological context for this regulation and show that calcineurin dephosphorylates and positively regulates Rga2 during pheromone signaling. Mating factor activates the Fus3/MAPK kinase, whose substrates induce gene expression, cell cycle arrest, and formation of the mating projection. Our studies demonstrate that Fus3 also phosphorylates Rga2 at inhibitory S/TP sites, which are targeted by Cdks during the cell cycle, and that calcineurin opposes Fus3 to activate Rga2 and decrease Cdc42 signaling. Yeast expressing an Rga2 mutant that is defective for regulation by calcineurin display increased gene expression in response to pheromone. This work is the first to identify cross-talk between Ca2+/calcineurin and Cdc42 signaling and to demonstrate modulation of Cdc42 activity through a GAP during mating.


Gene ◽  
2017 ◽  
Vol 598 ◽  
pp. 50-62 ◽  
Author(s):  
Sabreen Chahal ◽  
Peter Wei ◽  
Pachai Moua ◽  
Sung Pil James Park ◽  
Janet Kwon ◽  
...  

Biochimie ◽  
2016 ◽  
Vol 131 ◽  
pp. 149-158 ◽  
Author(s):  
Marcella Araújo Manfredi ◽  
Alyne Alexandrino Antunes ◽  
Larissa de Oliveira Passos Jesus ◽  
Maria Aparecida Juliano ◽  
Luiz Juliano ◽  
...  
Keyword(s):  

2013 ◽  
Vol 167 (2) ◽  
pp. 94-100 ◽  
Author(s):  
Eva Eilert ◽  
Theresa Rolf ◽  
Andreas Heumaier ◽  
Cornelis P. Hollenberg ◽  
Michael Piontek ◽  
...  

Gene ◽  
2013 ◽  
Vol 519 (2) ◽  
pp. 311-317 ◽  
Author(s):  
Geoff P. Lin-Cereghino ◽  
Carolyn M. Stark ◽  
Daniel Kim ◽  
Jennifer Chang ◽  
Nadia Shaheen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document