scholarly journals The role of cdc2 and other genes in meiosis in Schizosaccharomyces pombe.

Genetics ◽  
1995 ◽  
Vol 140 (4) ◽  
pp. 1235-1245 ◽  
Author(s):  
Y Iino ◽  
Y Hiramine ◽  
M Yamamoto

Abstract The requirement of the cdc2, cdc13 and cdc25 genes for meiosis in Schizosaccharomyces pombe was investigated using three different conditions to induce meiosis. These genes were known to be required for meiosis II. cdc13 and cdc25 are essential for meiosis I. The cdc2 gene, which is required for the initiation of both mitotic S-phase and M-phase, is essential for premeiotic DNA synthesis and meiosis II. The requirement of cdc2 for meiosis I was unclear. This contrasts with Saccharomyces cerevisiae, where CDC28, the homolog of cdc2, is required for meiosis I but not for premeiotic DNA synthesis. Expression of cdc13 and cdc25 was induced after premeiotic DNA synthesis, reaching a sharp peak before the first nuclear division. Expression of cdc22, encoding the large subunit of ribonucleotide reductase, was also induced but the peak was before premeiotic DNA synthesis. The induction of cdc13 and cdc25 was largely dependent on DNA synthesis and the function of the mei4 gene. The mei4 gene itself was also induced in a DNA synthesis-dependent manner. The chain of gene expression activating cdc25 may be important as part of the mechanism that ensures the dependency of nuclear division on DNA replication during meiosis.

2000 ◽  
Author(s):  
Gideon Grafi ◽  
Brian Larkins

The focus of this research project is to investigate the role of endoreduplication in maize endosperm development and the extent to which this process contributes to high levels of starch and storage protein synthesis. Although endoreduplication has been widely observed in many cells and tissues, especially those with high levels of metabolic activity, the molecular mechanisms through which the cell cycle is altered to produce consecutive cycles of S-phase without an intervening M-phase are unknown. Our previous research has shown that changes in the expression of several cell cycle regulatory genes coincide with the onset of endoreduplication. During this process, there is a sharp reduction in the activity of the mitotic cyclin-dependent kinase (CDK) and activation of the S-phase CDK. It appears the M-phase CDK is stable, but its activity is blocked by a proteinaceous inhibitor. Coincidentally, the S-phase checkpoint protein, retinoblastoma (ZmRb), becomes phosphorylated, presumably releasing an E2F-type transcriptional regulator which promotes the expression of genes responsible for DNA synthesis. To investigate the role of these cell cycle proteins in endoreduplication, we have created transgenic maize plants that express various genes in an endosperm-specific manner using a storage protein (g-zein) promoter. During the first year of the grant, we constructed point mutations of the maize M-phase kinase, p34cdc2. One alteration replaced aspartic acid at position 146 with asparagine (p3630-CdcD146N), while another changed threonine 161 to alanine (p3630-CdcT161A). These mutations abolish the activity of the CDK. We hypothesized that expression of the mutant forms of p34cdc2 in endoreduplicating endosperm, compared to a control p34cdc2, would lead to extra cycles of DNA synthesis. We also fused the gene encoding the regulatory subunit of the M- phase kinase, cyclin B, under the g-zein promoter. Normally, cyclin B is expected to be destroyed prior to the onset of endoreduplication. By producing high levels of this protein in developing endosperm, we hypothesized that the M-phase would be extended, potentially reducing the number of cycles of endoreduplication. Finally, we genetically engineered the wheat dwarf virus RepA protein for endosperm-specific expression. RepA binds to the maize retinoblastoma protein and presumably releases E2F-like transcription factors that activate DNA synthesis. We anticipated that inactivation of ZmRb by RepA would lead to additional cycles of DNA synthesis.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2021 ◽  
Author(s):  
P Stamatiadis ◽  
A Boel ◽  
G Cosemans ◽  
M Popovic ◽  
B Bekaert ◽  
...  

Abstract STUDY QUESTION What is the role of POU class 5 homeobox 1 (POU5F1) in human preimplantation development and how does it compare with the mouse model? SUMMARY ANSWER POU5F1 is required for successful development of mouse and human embryos to the blastocyst stage as knockout embryos exhibited a significantly lower blastocyst formation rate, accompanied by lack of inner cell mass (ICM) formation. WHAT IS KNOWN ALREADY Clustered regularly interspaced short palindromic repeats—CRISPR associated genes (CRISPR-Cas9) has previously been used to examine the role of POU5F1 during human preimplantation development. The reported POU5F1-targeted blastocysts always retained POU5F1 expression in at least one cell, because of incomplete CRISPR-Cas9 editing. The question remains of whether the inability to obtain fully edited POU5F1-targeted blastocysts in human results from incomplete editing or the actual inability of these embryos to reach the blastocyst stage. STUDY DESIGN, SIZE, DURATION The efficiency of CRISPR-Cas9 to induce targeted gene mutations was first optimized in the mouse model. Two CRISPR-Cas9 delivery methods were compared in the B6D2F1 strain: S-phase injection (zygote stage) (n = 135) versus metaphase II-phase (M-phase) injection (oocyte stage) (n = 23). Four control groups were included: non-injected media-control zygotes (n = 43)/oocytes (n = 48); sham-injected zygotes (n = 45)/oocytes (n = 47); Cas9-protein injected zygotes (n = 23); and Cas9 protein and scrambled guide RNA (gRNA)-injected zygotes (n = 27). Immunofluorescence analysis was performed in Pou5f1-targeted zygotes (n = 37), media control zygotes (n = 19), and sham-injected zygotes (n = 15). To assess the capacity of Pou5f1-null embryos to develop further in vitro, additional groups of Pou5f1-targeted zygotes (n = 29) and media control zygotes (n = 30) were cultured to postimplantation stages (8.5 dpf). Aiming to identify differences in developmental capacity of Pou5f1-null embryos attributed to strain variation, zygotes from a second mouse strain—B6CBA (n = 52) were targeted. Overall, the optimized methodology was applied in human oocytes following IVM (metaphase II stage) (n = 101). The control group consisted of intracytoplasmically sperm injected (ICSI) IVM oocytes (n = 33). Immunofluorescence analysis was performed in human CRISPR-injected (n = 10) and media control (n = 9) human embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS A gRNA-Cas9 protein mixture targeting exon 2 of Pou5f1/POU5F1 was microinjected in mouse oocytes/zygotes or human IVM oocytes. Reconstructed embryos were cultured for 4 days (mouse) or 6.5 days (human) in sequential culture media. An additional group of mouse-targeted zygotes was cultured to postimplantation stages. Embryonic development was assessed daily, with detailed scoring at late blastocyst stage. Genomic editing was assessed by immunofluorescence analysis and next-generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Genomic analysis in mouse revealed very high editing efficiencies with 95% of the S-Phase and 100% of the M-Phase embryos containing genetic modifications, of which 89.47% in the S-Phase and 84.21% in the M-Phase group were fully edited. The developmental capacity was significantly compromised as only 46.88% embryos in the S-Phase and 19.05% in the M-Phase group reached the blastocyst stage, compared to 86.36% in control M-Phase and 90.24% in control S-Phase groups, respectively. Immunofluorescence analysis confirmed the loss of Pou5f1 expression and downregulation of the primitive marker SRY-Box transcription factor (Sox17). Our experiments confirmed the requirement of Pou5f1 expression for blastocyst development in the second B6CBA strain. Altogether, our data obtained in mouse reveal that Pou5f1 expression is essential for development to the blastocyst stage. M-Phase injection in human IVM oocytes (n = 101) similarly resulted in 88.37% of the POU5F1-targeted embryos being successfully edited. The developmental capacity of generated embryos was compromised from the eight-cell stage onwards. Only 4.55% of the microinjected embryos reached the late blastocyst stage and the embryos exhibited complete absence of ICM and an irregular trophectoderm cell layer. Loss of POU5F1 expression resulted in absence of SOX17 expression, as in mouse. Interestingly, genetic mosaicism was eliminated in a subset of targeted human embryos (9 out of 38), three of which developed into blastocysts. LIMITATIONS, REASONS FOR CAUTION One of the major hurdles of CRISPR-Cas9 germline genome editing is the occurrence of mosaicism, which may complicate phenotypic analysis and interpretation of developmental behavior of the injected embryos. Furthermore, in this study, spare IVM human oocytes were used, which may not recapitulate the developmental behavior of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS Comparison of developmental competency following CRISPR-Cas-mediated gene targeting in mouse and human may be influenced by the selected mouse strain. Gene targeting by CRISPR-Cas9 is subject to variable targeting efficiencies. Therefore, striving to reduce mosaicism can provide novel molecular insights into mouse and human embryogenesis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by the Ghent University Hospital and Ghent University and supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Qian Liu ◽  
Lijuan Guo ◽  
Hongyan Qi ◽  
Meng Lou ◽  
Rui Wang ◽  
...  

AbstractRibonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.


1987 ◽  
Vol 7 (10) ◽  
pp. 3554-3560
Author(s):  
F Cavalieri ◽  
M Goldfarb

Induction of quiescent BALB/c 3T3 murine fibroblasts by platelet-derived growth factor (PDGF) or fibroblast growth factor (FGFs) is accompanied by induction of c-myc gene expression. To study the role of c-myc in cell growth, we transfected BALB/c 3T3 cells with a plasmid construct containing a glucocorticoid-inducible c-myc gene. When these transfected cells were growth arrested in PDGF-FGF-freedefined medium, glucocorticoid treatment induced S-phase DNA synthesis. This induction of DNA synthesis was inefficient, and cell proliferation was not evident, suggesting that growth factors act through stimulation of c-myc expression together with other intracellular events.


1995 ◽  
Vol 108 (2) ◽  
pp. 475-486 ◽  
Author(s):  
F. al-Khodairy ◽  
T. Enoch ◽  
I.M. Hagan ◽  
A.M. Carr

Normal eukaryotic cells do not enter mitosis unless DNA is fully replicated and repaired. Controls called ‘checkpoints’, mediate cell cycle arrest in response to unreplicated or damaged DNA. Two independent Schizosaccharomyces pombe mutant screens, both of which aimed to isolate new elements involved in checkpoint controls, have identified alleles of the hus5+ gene that are abnormally sensitive to both inhibitors of DNA synthesis and to ionizing radiation. We have cloned and sequenced the hus5+ gene. It is a novel member of the E2 family of ubiquitin conjugating enzymes (UBCs). To understand the role of hus5+ in cell cycle control we have characterized the phenotypes of the hus5 mutants and the hus5 gene disruption. We find that, whilst the mutants are sensitive to inhibitors of DNA synthesis and to irradiation, this is not due to an inability to undergo mitotic arrest. Thus, the hus5+ gene product is not directly involved in checkpoint control. However, in common with a large class of previously characterized checkpoint genes, it is required for efficient recovery from DNA damage or S-phase arrest and manifests a rapid death phenotype in combination with a temperature sensitive S phase and late S/G2 phase cdc mutants. In addition, hus5 deletion mutants are severely impaired in growth and exhibit high levels of abortive mitoses, suggesting a role for hus5+ in chromosome segregation. We conclude that this novel UBC enzyme plays multiple roles and is virtually essential for cell proliferation.


2000 ◽  
Vol 113 (7) ◽  
pp. 1223-1230 ◽  
Author(s):  
J. Liu ◽  
H. Wang ◽  
M.K. Balasubramanian

Cell division in Schizosaccharomyces pombe is achieved through the use of a medially positioned actomyosin ring. A division septum is formed centripetally, concomitant with actomyosin ring constriction. Genetic screens have identified mutations in a number of genes that affect actomyosin ring or septum assembly. These cytokinesis-defective mutants, however, undergo multiple S and M phases and die as elongated cells with multiple nuclei. Recently, we have shown that a mutant allele of the S. pombe drc1(+)/cps1(+) gene, which encodes a 1,3-(beta)-glucan synthase subunit, is defective in cytokinesis but displays a novel phenotype. drc1-191/cps1-191 cells are capable of assembling actomyosin rings and completing mitosis, but are incapable of assembling the division septum, causing them to arrest as binucleate cells with a stable actomyosin ring. Each nucleus in arrested cps1-191 cells is able to undergo S phase but these G(2) nuclei are significantly delayed for entry into the M phase. In this study we have investigated the mechanism that causes cps1-191 to block with two G(2) nuclei. We show that the inability of cps1-191 mutants to proceed through multiple mitotic cycles is not related to a defect in cell growth. Rather, the failure to complete some aspect of cytokinesis may prevent the G(2)/M transition of the two interphase-G(2) nuclei. The G(2)/M transition defect of cps1-191 mutants is suppressed by a mutation in the wee1 gene and also by the dominant cdc2 allele cdc2-1w, but not the cdc2-3w allele. Transient depolymerization of all F-actin structures also allowed a significant proportion of the cps1-191 cells to undergo a second round of mitosis. We conclude that an F-actin and Wee1p dependent checkpoint blocks G(2)/M transition until previous cytokinesis is completed.


1997 ◽  
Vol 17 (5) ◽  
pp. 2381-2390 ◽  
Author(s):  
A E Parker ◽  
R K Clyne ◽  
A M Carr ◽  
T J Kelly

Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein present in all eukaryotes. In vitro studies have implicated RPA in simian virus 40 DNA synthesis and nucleotide excision repair, but little direct information is available about the in vivo roles of the protein. We report here the cloning of the largest subunit of RPA (rpa1+) from the fission yeast Schizosaccharomyces pombe. The rpa1+ gene is essential for viability and is expressed specifically at S phase of the cell cycle. Genetic analysis revealed that rpa1+ is the locus of the S. pombe radiation-sensitive mutation rad11. The rad11 allele exhibits pleiotropic effects consistent with an in vivo role for RPA in both DNA repair and DNA synthesis. The mutant is sensitive to both UV and ionizing radiation but is not defective in the DNA damage-dependent checkpoint, consistent with the hypothesis that RPA is part of the enzymatic machinery of DNA repair. When incubated in hydroxyurea, rad11 cells initially arrest with a 1C DNA content but then lose viability coincident with reentry into S phase, suggesting that DNA synthesis is aberrant under these conditions. A significant fraction of the mutant cells subsequently undergo inappropriate mitosis in the presence of hydroxyurea, indicating that RPA also plays a role in the checkpoint mechanism that monitors the completion of S phase. We propose that RPA is required to maintain the integrity of replication complexes when DNA replication is blocked. We further suggest that the rad11 mutation leads to the premature breakdown of such complexes, thereby preventing recovery from the hydroxyurea arrest and eliminating a signal recognized by the S-phase checkpoint mechanism.


Development ◽  
1985 ◽  
Vol 89 (Supplement) ◽  
pp. 271-284
Author(s):  
C. C. Ford

Cell cycles in early amphibian embryos are characterized by the absence of G1 and G2 phases. The simple cycle of S phase and mitosis does show similarities with other systems, particularly in the presence of cytoplasmic components advancing nuclei into DNA synthesis and mitosis. Maturation-promoting factor induces nuclear envelope breakdown and subsequent chromosome condensation. Cytoplasmic factors appear during maturation which are capable of inducing DNA synthesis, and arrest of the nuclear division cycle in metaphase (cytostatic factor). The timing of appearance of these activities is considered and their relationship in integrating DNA synthesis during early cleavage is discussed.


1978 ◽  
Vol 33 (1) ◽  
pp. 399-411
Author(s):  
J. Creanor

Oxygen uptake was measured in synchronous cultures of the fission yeast Schizosaccharomyces pombe. The rate of oxygen uptake was found to increase in a step-wise manner at the beginning of the cycle and again in the middle of the cycle. The increases in rate were such that overall, oxygen uptake doubled in rate once per cell cycle. Addition of inhibitors of DNA synthesis or nuclear division to a synchronous culture did not affect the uptake of oxygen. In an induced synchronous culture, in which DNA synthesis, cell division, and nuclear division, but not ‘growth’ were synchronized, oxygen uptake increased continuously in rate and did not show the step-wise rises which were shown in the selection-synchronized culture. These results were compared with previous measurements of oxygen uptake in yeast and an explanation is suggested for the many different patterns which have been reported.


Sign in / Sign up

Export Citation Format

Share Document