scholarly journals Evolution of Fitness in Experimental Populations of Vesicular Stomatitis Virus

Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 673-679 ◽  
Author(s):  
Santiago F Elena ◽  
Fernando González-Candelas ◽  
Isabel S Novella ◽  
Elizabeth A Duarte ◽  
David K Clarke ◽  
...  

Abstract The evolution of fitness in experimental clonal populations of vesicular stomatitis virus (VSV) has been compared under different genetic (fitness of initial clone) and demographic (population dynamics) regimes. In spite of the high genetic heterogeneity among replicates within experiments, there is a clear effect of population dynamics on the evolution of fitness. Those populations that went through strong periodic bottlenecks showed a decreased fitness in competition experiments with wild type. Conversely, mutant populations that were transferred under the dynamics of continuous population expansions increased their fitness when compared with the same wild type. The magnitude of the observed effect depended on the fitness of the original viral clone. Thus, high fitness clones showed a larger reduction in fitness than low fitness clones under dynamics with included periodic bottleneck. In contrast, the gain in fitness was larger the lower the initial fitness of the viral clone. The quantitative genetic analysis of the trait “fitness” in the resulting populations shows that genetic variation for the trait is positively correlated with the magnitude of the change in the same trait. The results are interpreted in terms of the operation of Muller's ratchet and genetic drift as opposed to the appearance of beneficial mutations.

Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 727-742 ◽  
Author(s):  
R Frankham ◽  
D A Briscoe ◽  
R K Nurthen

ABSTRACT Abdominal bristle selection lines (three high and three low) and controls were founded from a marked homozygous line to measure the contribution of sex-linked "mutations" to selection response. Two of the low lines exhibited a period of rapid response to selection in females, but not in males. There were corresponding changes in female variance, in heritabilities in females, in the sex ratio (a deficiency of females) and in fitness, as well as the appearance of a mutant phenotype in females of one line. All of these changes were due to bb alleles (partial deficiencies for the rRNA tandon) in the X chromosomes of these lines, while the Y chromosomes remained wild-type bb+. We argue that the bb alleles arose by unequal crossing over in the rRNA tandon.—A prediction of this hypothesis is that further changes can occur in the rRNA tandon as selection is continued. This has now been shown to occur.—Our minimum estimate of the rate of occurrence of changes at the rRNA tandon is 3 × 10-4. As this is substantially higher than conventional mutation rates, the questions of the mechanisms and rates of origin of new quantitative genetic variation require careful re-examination.


2000 ◽  
Vol 74 (17) ◽  
pp. 7895-7902 ◽  
Author(s):  
E. Brian Flanagan ◽  
L. Andrew Ball ◽  
Gail W. Wertz

ABSTRACT Vesicular stomatitis virus (VSV) is the prototype of the Rhabdoviridae and contains nonsegmented negative-sense RNA as its genome. The 11-kb genome encodes five genes in the order 3′-N-P-M-G-L-5′, and transcription is obligatorily sequential from the single 3′ promoter. As a result, genes at promoter-proximal positions are transcribed at higher levels than those at promoter-distal positions. Previous work demonstrated that moving the gene encoding the nucleocapsid protein N to successively more promoter-distal positions resulted in stepwise attenuation of replication and lethality for mice. In the present study we investigated whether moving the gene for the attachment glycoprotein G, which encodes the major neutralizing epitopes, from its fourth position up to first in the gene order would increase G protein expression in cells and alter the immune response in inoculated animals. In addition to moving the G gene alone, we also constructed viruses having both the G and N genes rearranged. This produced three variant viruses having the orders 3′-G-N-P-M-L-5′ (G1N2), 3′-P-M-G-N-L-5′ (G3N4), and 3′-G-P-M-N-L-5′ (G1N4), respectively. These viruses differed from one another and from wild-type virus in their levels of gene expression and replication in cell culture. The viruses also differed in their pathogenesis, immunogenicity, and level of protection of mice against challenge with wild-type VSV. Translocation of the G gene altered the kinetics and level of the antibody response in mice, and simultaneous reduction of N protein expression reduced replication and lethality for animals. These studies demonstrate that gene rearrangement can be exploited to design nonsegmented negative-sense RNA viruses that have characteristics desirable in candidates for live attenuated vaccines.


2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Louis-Marie Bloyet ◽  
Benjamin Morin ◽  
Vesna Brusic ◽  
Erica Gardner ◽  
Robin A. Ross ◽  
...  

ABSTRACT Nonsegmented negative-strand (NNS) RNA viruses possess a ribonucleoprotein template in which the genomic RNA is sequestered within a homopolymer of nucleocapsid protein (N). The viral RNA-dependent RNA polymerase (RdRP) resides within an approximately 250-kDa large protein (L), along with unconventional mRNA capping enzymes: a GDP:polyribonucleotidyltransferase (PRNT) and a dual-specificity mRNA cap methylase (MT). To gain access to the N-RNA template and orchestrate the LRdRP, LPRNT, and LMT, an oligomeric phosphoprotein (P) is required. Vesicular stomatitis virus (VSV) P is dimeric with an oligomerization domain (OD) separating two largely disordered regions followed by a globular C-terminal domain that binds the template. P is also responsible for bringing new N protomers onto the nascent RNA during genome replication. We show VSV P lacking the OD (PΔOD) is monomeric but is indistinguishable from wild-type P in supporting mRNA transcription in vitro. Recombinant virus VSV-PΔOD exhibits a pronounced kinetic delay in progeny virus production. Fluorescence recovery after photobleaching demonstrates that PΔOD diffuses 6-fold more rapidly than the wild type within viral replication compartments. A well-characterized defective interfering particle of VSV (DI-T) that is only competent for RNA replication requires significantly higher levels of N to drive RNA replication in the presence of PΔOD. We conclude P oligomerization is not required for mRNA synthesis but enhances genome replication by facilitating RNA encapsidation. IMPORTANCE All NNS RNA viruses, including the human pathogens rabies, measles, respiratory syncytial virus, Nipah, and Ebola, possess an essential L-protein cofactor, required to access the N-RNA template and coordinate the various enzymatic activities of L. The polymerase cofactors share a similar modular organization of a soluble N-binding domain and a template-binding domain separated by a central oligomerization domain. Using a prototype of NNS RNA virus gene expression, vesicular stomatitis virus (VSV), we determined the importance of P oligomerization. We find that oligomerization of VSV P is not required for any step of viral mRNA synthesis but is required for efficient RNA replication. We present evidence that this likely occurs through the stage of loading soluble N onto the nascent RNA strand as it exits the polymerase during RNA replication. Interfering with the oligomerization of P may represent a general strategy to interfere with NNS RNA virus replication.


2004 ◽  
Vol 78 (11) ◽  
pp. 5799-5804 ◽  
Author(s):  
Isabel S. Novella ◽  
Daniel D. Reissig ◽  
Claus O. Wilke

ABSTRACT We used vesicular stomatitis virus to test the effect of complementation on the relative fitness of a deleterious mutant, monoclonal antibody-resistant mutant (MARM) N, in competition with its wild-type ancestor. We carried out competitions of MARM N and wild-type populations at different multiplicities of infection (MOIs) and initial ratios of the wild type to the mutant and found that the fitness of MARM N relative to that of the wild type is very sensitive to changes in the MOI (i.e., the degree of complementation) but depends little, if at all, on the initial frequencies of MARM N and the wild type. Further, we developed a mathematical model under the assumption that during coinfection both viruses contribute to a common pool of protein products in the infected cell and that they both exploit this common pool equally. Under such conditions, the fitness of all virions that coinfect a cell is the average fitness in the absence of coinfection of that group of virions. In the absence of coinfection, complementation cannot take place and the relative fitness of each competitor is only determined by the selective value of its own products. We found good agreement between our experimental results and the model predictions, which suggests that the wild type and MARM N freely share all of their gene products under coinfection.


1996 ◽  
Vol 135 (1) ◽  
pp. 153-167 ◽  
Author(s):  
J Peränen ◽  
P Auvinen ◽  
H Virta ◽  
R Wepf ◽  
K Simons

Rab8 is a small Ras-like GTPase that regulates polarized membrane transport to the basolateral membrane in epithelial cells and to the dendrites in neurons. It has recently been demonstrated that fibroblasts sort newly synthesized proteins into two different pathways for delivery to the cell surface that are equivalent to the apical and the basolateral post-Golgi routes in epithelial cells (Yoshimori, T., P. Keller, M.G. Roth, and K. Simons. 1996. J. Cell Biol. 133:247-256). To determine the role of Rab8 in fibroblasts, we used both transient expression systems and stable cell lines expressing mutant or wild-type (wt) Rab8. A dramatic change in cell morphology occurred in BHK cells expressing both the wt Rab8 and the activated form of the GTPase, the Rab8Q67L mutant. These cells formed processes as a result of a reorganization of both their actin filaments and microtubules. Newly synthesized vesicular stomatitis virus G glycoprotein, a basolateral marker protein in MDCK cells, was preferentially delivered into these cell outgrowths. Based on these findings, we propose that Rab8 provides a link between the machinery responsible for the formation of cell protrusions and polarized biosynthetic membrane traffic.


2000 ◽  
Vol 74 (1) ◽  
pp. 203-208 ◽  
Author(s):  
Alexander J. McAdam ◽  
Evan A. Farkash ◽  
Benjamin E. Gewurz ◽  
Arlene H. Sharpe

ABSTRACT Antibody and cytotoxic T-lymphocyte (CTL) responses have critical roles in eliminating many viral infections. In addition to stimulation of the T-cell receptor, T cells require costimulatory signals to respond optimally. We evaluated the role of B7 costimulatory molecules (B7-1 and B7-2) in the immune response to viral infection using vesicular stomatitis virus (VSV) and mice lacking either B7-1 or B7-2 or both molecules. Mice lacking both B7-1 and B7-2 had essentially no anti-VSV immunoglobulin G1 (IgG1) response, decreased IgG2a responses, and normal IgM responses, while mice lacking either B7-1 or B7-2 had unaltered anti-VSV antibody responses compared to wild-type mice. Depletion of CD4+ cells further reduced the IgG2a response in mice lacking both B7 molecules, suggesting that CD4−cells may supply help for IgG2a in the absence of B7 costimulation. The absence of both B7 molecules profoundly reduced generation of both primary and secondary VSV-specific class I major histocompatibility complex (MHC)-restricted CTL, whereas VSV-specific CTL responses in mice lacking either B7-1 or B7-2 were similar to those of wild-type animals. Class I MHC-restricted CTL in wild-type mice were not dependent on CD4+ cells, suggesting that the failure of CTL in the absence of B7s is due to a lack of B7 costimulation directly to the CD8+ CTL. These data demonstrate that B7-1 and B7-2 have critical, overlapping functions in the antibody and CTL responses to this viral infection.


Sign in / Sign up

Export Citation Format

Share Document