scholarly journals In Vivo Analysis Reveals That the Interdomain Region of the Yeast Proliferating Cell Nuclear Antigen Is Important for DNA Replication and DNA Repair

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 479-493 ◽  
Author(s):  
Neelam S Amin ◽  
Connie Holm

Abstract To identify the regions of the proliferating cell nuclear antigen (PCNA) that are important for function in vivo, we used random mutagenesis to isolate 10 cold-sensitive (Cs−) and 31 methyl methanesulfonate-sensitive (Mmss) mutations of the PCNA gene (POL30) in Saccharomyces cerevisiae. Unlike the Mmss mutations, the CsC mutations are strikingly clustered in the interdomain region of the three-dimensional PCNA monomer structure. At the restrictive temperature, the Cs−  pol30 mutants undergo a RAD9 dependent arrest as large-budded cells with a 2c DNA content. Defects in DNA synthesis are suggested by a significant delay in the progression of synchronized pol30 cells through S phase at the restrictive temperature. DNA repair defects are revealed by the observation that Cs−  pol30 mutants are very sensitive to the alkylating agent MMS and mildly sensitive to ultraviolet radiation, although they are not sensitive to gamma radiation. Finally, analysis of the chromosomal DNA in pol30 cells by velocity sedimentation gradients shows that pol30 cells accumulate single-stranded DNA breaks at the restrictive temperature. Thus, our results show that PCNA plays an essential role in both DNA replication and DNA repair in vivo.

1995 ◽  
Vol 269 (3) ◽  
pp. H943-H951 ◽  
Author(s):  
K. Reiss ◽  
W. Cheng ◽  
J. Kajstura ◽  
E. H. Sonnenblick ◽  
L. G. Meggs ◽  
...  

To determine whether the growth of cardiac fibroblasts during development is modulated by the insulin-like growth factor (IGF)-1 receptor (IGF-1R), the expression of IGF-1, IGF-2, and IGF-1R was determined in fibroblasts from fetal and postnatal hearts. The expression of proliferating cell nuclear antigen (PCNA) and DNA polymerase-alpha was also evaluated in combination with the estimation of DNA replication. In comparison with fetal hearts, at postnatal day 21, fibroblast expression of IGF-1R mRNA, IGF-2, PCNA, and DNA polymerase-alpha was reduced by 77, 70, 80, and 86%, respectively. Moreover, IGF-1R protein decreased by 48% at 21 days. Bromodeoxyuridine labeling decreased by 88 and 89% in the left and right ventricle, respectively, at this time. Two different antisense oligodeoxynucleotides to IGF-1R reduced DNA replication by 60 and 44% in fibroblasts in culture. In addition, this intervention markedly attenuated the growth response of fibroblasts to IGF-1 or serum. In conclusion, the IGF-1R system appears to play a major role in the regulation of fibroblast growth in the heart in vivo.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Michael A McAlear ◽  
K Michelle Tuffo ◽  
Connie Holm

We used genetic and biochemical techniques to characterize the phenotypes associated with mutations affecting the large subunit of replication factor C (Cdc44p or Rfc1p) in Saccharomyces cerevisiae. We demonstrate that Cdc44p is required for both DNA replication and DNA repair in vivo. Cold-sensitive cdc44 mutants experience a delay in traversing S phase at the restrictive temperature following alpha factor arrest; although mutant cells eventually accumulate with a G2/M DNA content, they undergo a cell cycle arrest and initiate neither mitosis nor a new round of DNA synthesis. cdc44 mutants also exhibit an elevated level of spontaneous mutation, and they are sensitive both to the DNA damaging agent methylmethane sulfonate and to exposure to UV radiation. After exposure to UV radiation, cdc44 mutants at the restrictive temperature contain higher levels of single-stranded DNA breaks than do wild-type cells. This observation is consistent with the hypothesis that Cdc44p is involved in repairing gaps in the DNA after the excision of damaged bases. Thus, Cdc44p plays an important role in both DNA replication and DNA repair in vivo.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 416 ◽  
Author(s):  
Dea Slade

DNA replication and repair are essential cellular processes that ensure genome duplication and safeguard the genome from deleterious mutations. Both processes utilize an abundance of enzymatic functions that need to be tightly regulated to ensure dynamic exchange of DNA replication and repair factors. Proliferating cell nuclear antigen (PCNA) is the major coordinator of faithful and processive replication and DNA repair at replication forks. Post-translational modifications of PCNA, ubiquitination and acetylation in particular, regulate the dynamics of PCNA-protein interactions. Proliferating cell nuclear antigen (PCNA) monoubiquitination elicits ‘polymerase switching’, whereby stalled replicative polymerase is replaced with a specialized polymerase, while PCNA acetylation may reduce the processivity of replicative polymerases to promote homologous recombination-dependent repair. While regulatory functions of PCNA ubiquitination and acetylation have been well established, the regulation of PCNA-binding proteins remains underexplored. Considering the vast number of PCNA-binding proteins, many of which have similar PCNA binding affinities, the question arises as to the regulation of the strength and sequence of their binding to PCNA. Here I provide an overview of post-translational modifications on both PCNA and PCNA-interacting proteins and discuss their relevance for the regulation of the dynamic processes of DNA replication and repair.


1989 ◽  
Vol 9 (1) ◽  
pp. 57-66
Author(s):  
M Zuber ◽  
E M Tan ◽  
M Ryoji

Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase delta but not the other DNA polymerases in vitro. We injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase delta is necessary for plasmid replication in vivo. Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase alpha. Anti-DNA polymerase alpha alone inhibited plasmid replication by 63%. Thus, DNA polymerase alpha is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase alpha antibody blocked 73% of replication. We concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase delta. In addition, we obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymerase alpha, that the structure of DNA polymerase alpha holoenzyme for chromosome replication is significantly different from that for plasmid replication.


Sign in / Sign up

Export Citation Format

Share Document