scholarly journals Mcs4, a Two-Component System Response Regulator Homologue, Regulates the Schizosaccharomyces pombe Cell Cycle Control

Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1043-1051 ◽  
Author(s):  
Guillaume Cottarel

The Schizosaccharomyces pombe cdc2-3w weel-50 double mutant displays a temperature-sensitive lethal phenotype termed mitotic catastrophe. Six mitotic catastrophe suppressor (mcs1-6) genes were identified in a genetic screen designed to identify regulators of cdc2. Mutations in mcs1-6 suppress the cdc2-3w weel-50 temperature-sensitive growth defect. Here, the cloning of mcs4 is described. The mcs4 gene product displays significant sequence homology to members of the two-component system response regulator protein family. Strains carrying the mcs4 and cdc25 mutations display a synthetic osmotic lethal phenotype along with an inability to grow on minimal synthetic medium. These phenotypes are suppressed by a mutation in wee1. In addition, the wis1 gene, encoding a stress-activated mitogen-activated protein kinase kinase, was identified as a dosage suppressor in this screen. These findings link the two-component signal transduction system to stress response and cell cycle control in S. pombe.

Cell Reports ◽  
2021 ◽  
Vol 37 (12) ◽  
pp. 110147
Author(s):  
Yitian Zhou ◽  
Qinqin Pu ◽  
Jiandong Chen ◽  
Guijuan Hao ◽  
Rong Gao ◽  
...  

2005 ◽  
Vol 187 (15) ◽  
pp. 5419-5426 ◽  
Author(s):  
Hendrik Szurmant ◽  
Kristine Nelson ◽  
Eun-Ja Kim ◽  
Marta Perego ◽  
James A. Hoch

ABSTRACT Of the numerous two-component signal transduction systems found in bacteria, only a very few have proven to be essential for cell viability. Among these is the YycF (response regulator)-YycG (histidine kinase) system, which is highly conserved in and specific to the low-G+C content gram-positive bacteria. Given the pathogenic nature of several members of this class of bacteria, the YycF-YycG system has been suggested as a prime antimicrobial target. In an attempt to identify genes involved in regulation of this two-component system, a transposon mutagenesis study was designed to identify suppressors of a temperature-sensitive YycF mutant in Bacillus subtilis. Suppressors could be identified, and the prime target was the yycH gene located adjacent to yycG and within the same operon. A lacZ reporter assay revealed that YycF-regulated gene expression was elevated in a yycH strain, whereas disruption of any of the three downstream genes within the operon, yycI, yycJ, and yycK, showed no such effect. The concentrations of both YycG and YycF, assayed immunologically, remained unchanged between the wild-type and the yycH strain as determined by immunoassay. Alkaline phosphatase fusion studies showed that YycH is located external to the cell membrane, suggesting that it acts in the regulation of the sensor domain of the YycG sensor histidine kinase. The yycH strain showed a characteristic cell wall defect consistent with the previously suggested notion that the YycF-YycG system is involved in regulating cell wall homeostasis and indicating that either up- or down-regulation of YycF activity affects this homeostatic mechanism.


1995 ◽  
Vol 108 (2) ◽  
pp. 475-486 ◽  
Author(s):  
F. al-Khodairy ◽  
T. Enoch ◽  
I.M. Hagan ◽  
A.M. Carr

Normal eukaryotic cells do not enter mitosis unless DNA is fully replicated and repaired. Controls called ‘checkpoints’, mediate cell cycle arrest in response to unreplicated or damaged DNA. Two independent Schizosaccharomyces pombe mutant screens, both of which aimed to isolate new elements involved in checkpoint controls, have identified alleles of the hus5+ gene that are abnormally sensitive to both inhibitors of DNA synthesis and to ionizing radiation. We have cloned and sequenced the hus5+ gene. It is a novel member of the E2 family of ubiquitin conjugating enzymes (UBCs). To understand the role of hus5+ in cell cycle control we have characterized the phenotypes of the hus5 mutants and the hus5 gene disruption. We find that, whilst the mutants are sensitive to inhibitors of DNA synthesis and to irradiation, this is not due to an inability to undergo mitotic arrest. Thus, the hus5+ gene product is not directly involved in checkpoint control. However, in common with a large class of previously characterized checkpoint genes, it is required for efficient recovery from DNA damage or S-phase arrest and manifests a rapid death phenotype in combination with a temperature sensitive S phase and late S/G2 phase cdc mutants. In addition, hus5 deletion mutants are severely impaired in growth and exhibit high levels of abortive mitoses, suggesting a role for hus5+ in chromosome segregation. We conclude that this novel UBC enzyme plays multiple roles and is virtually essential for cell proliferation.


2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.


2020 ◽  
Author(s):  
Lorena Novoa-Aponte ◽  
Fernando C. Soncini ◽  
José M. Argüello

ABSTRACTTwo component systems control periplasmic Cu+ homeostasis in Gram-negative bacteria. In characterized systems such as Escherichia coli CusRS, upon Cu+ binding to the periplasmic sensing domain of CusS, a cytoplasmic phosphotransfer domain phosphorylates the response regulator CusR. This drives the expression of efflux transporters, chaperones, and redox enzymes to ameliorate metal toxic effects. Here, we show that the Pseudomonas aeruginosa two component sensor histidine kinase CopS exhibits a Cu-dependent phosphatase activity that maintains a non-phosphorylated CopR when the periplasmic Cu levels are below its activation threshold. Upon Cu+ binding to the sensor, the phosphatase activity is blocked and the phosphorylated CopR activates transcription of the CopRS regulon. Supporting the model, mutagenesis experiments revealed that the ΔcopS strain showed constitutive high expression of the CopRS regulon, lower intracellular Cu+ levels, and larger Cu tolerance when compared to wild type cells. The invariant phospho-acceptor residue His235 of CopS was not required for the phosphatase activity itself, but necessary for its Cu-dependency. To sense the metal, the periplasmic domain of CopS binds two Cu+ ions at its dimeric interface. Homology modeling of CopS based on CusS structure (four Ag+ binding sites) clearly explains the different binding stoichiometries in both systems. Interestingly, CopS binds Cu+/2+ with 30 × 10−15 M affinities, pointing to the absence of free (hydrated) Cu+/2+ in the periplasm.IMPORTANCECopper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins, and generating damaging free radicals. Consequently, copper overload is a strategy that eukaryotic cells use to combat pathogens. Bacteria have developed copper sensing transcription factors to control copper homeostasis. The cell envelope is the first compartment that has to cope with copper stress. Dedicated two component systems control the periplasmic response to metal overload. This manuscript shows that the copper sensing two component system present in Pseudomonadales exhibits a signal-dependent phosphatase activity controlling the activation of the response regulator, distinct from previously described periplasmic Cu sensors. Importantly, the data show that the sensor is activated by copper levels compatible with the absence of free copper in the cell periplasm. This emphasizes the diversity of molecular mechanisms that have evolved in various bacteria to manage the copper cellular distribution.


Sign in / Sign up

Export Citation Format

Share Document