scholarly journals A Yeast Heterogeneous Nuclear Ribonucleoprotein Complex Associated With RNA Polymerase II

Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 557-571 ◽  
Author(s):  
Nicholas K Conrad ◽  
Scott M Wilson ◽  
Eric J Steinmetz ◽  
Meera Patturajan ◽  
David A Brow ◽  
...  

Abstract Recent evidence suggests a role for the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) in pre-mRNA processing. The yeast NRD1 gene encodes an essential RNA-binding protein that shares homology with mammalian CTD-binding proteins and is thought to regulate mRNA abundance by binding to a specific cis-acting element. The present work demonstrates genetic and physical interactions among Nrd1p, the pol II CTD, Nab3p, and the CTD kinase CTDK-I. Previous studies have shown that Nrd1p associates with the CTD of pol II in yeast two-hybrid assays via its CTD-interaction domain (CID). We show that nrd1 temperature-sensitive alleles are synthetically lethal with truncation of the CTD to 9 or 10 repeats. Nab3p, a yeast hnRNP, is a high-copy suppressor of some nrd1 temperature-sensitive alleles, interacts with Nrd1p in a yeast two-hybrid assay, and coimmunoprecipitates with Nrd1p. Temperature-sensitive alleles of NAB3 are suppressed by deletion of CTK1, a kinase that has been shown to phosphorylate the CTD and increase elongation efficiency in vitro. This set of genetic and physical interactions suggests a role for yeast RNA-binding proteins in transcriptional regulation.

RNA ◽  
2007 ◽  
Vol 13 (3) ◽  
pp. 361-373 ◽  
Author(s):  
K. L. Carroll ◽  
R. Ghirlando ◽  
J. M. Ames ◽  
J. L. Corden

2019 ◽  
Vol 60 (9) ◽  
pp. 2015-2025 ◽  
Author(s):  
Toshihiro Arae ◽  
Kotone Morita ◽  
Riko Imahori ◽  
Yuya Suzuki ◽  
Shigetaka Yasuda ◽  
...  

Abstract CCR4/CAF1 are widely conserved deadenylases in eukaryotes. They form a large complex that includes NOT1 as a scaffold protein and various NOT proteins that are core components of multiple levels of gene expression control. The CCR4-NOT complex also contains several RNA-binding proteins as accessory proteins, which are required for target recognition by CCR4/CAF1 deadenylases. AtCCR4a/b, orthologs of human CCR4 in Arabidopsis, have various physiological effects. AtCCR4 isoforms are likely to have specific target mRNAs related to each physiological effect; however, AtCCR4 does not have RNA-binding capability. Therefore, identifying factors that interact with AtCCR4a/b is indispensable to understand its function as a regulator of gene expression, as well as the target mRNA recognition mechanism. Here, we identified putative components of the AtCCR4-NOT complex using co-immunoprecipitation in combination with mass spectrometry using FLAG-tagged AtCCR4b and subsequent verification with a yeast two-hybrid assay. Interestingly, four of 11 AtCAF1 isoforms interacted with both AtCCR4b and AtNOT1, whereas two isoforms interacted only with AtNOT1 in yeast two-hybrid assays. These results imply that Arabidopsis has multiple CCR4-NOT complexes with various combinations of deadenylases. We also revealed that the RNA-binding protein Arabidopsis Pumilio 5 and 2 interacted with AtCCR4a/b in the cytoplasm with a few foci.


1995 ◽  
Vol 15 (8) ◽  
pp. 4562-4571 ◽  
Author(s):  
D Immanuel ◽  
H Zinszner ◽  
D Ron

Many oncogenes associated with human sarcomas are composed of a fusion between transcription factors and the N-terminal portions of two similar RNA-binding proteins, TLS and EWS. Though the oncogenic fusion proteins lack the RNA-binding domain and do not bind RNA, the contribution from the N-terminal portion of the RNA-binding protein is essential for their transforming activity. TLS and EWS associate in vivo with RNA polymerase II (Pol II) transcripts. To learn more about the target gene specificity of this interaction, the localization of a Drosophila melanogaster protein that has extensive sequence identity to the C-terminal RNA-binding portions of TLS and EWS was studied in preparations of Drosophila polytene nuclei. cDNA clones encoding the full-length Drosophila TLS-EWS homolog, SARFH (stands for sarcoma-associated RNA-binding fly homolog), were isolated. Functional similarity to TLS and EWS was revealed by the association of SARFH with Pol II transcripts in mammalian cells and by the ability of SARFH to elicit homologous down-regulation of the levels of the mammalian proteins. The SARFH gene is expressed in the developing Drosophila embryo from the earliest stages of cellularization and is subsequently found in many cell types. In preparations of polytene chromosomes from salivary gland nuclei, SARFH antibodies recognize their target associated with the majority of active transcription units, revealed by colocalization with the phosphorylated form of RNA Pol II. We conclude that SARFH and, by homology, EWS and TLS participate in a function common to the expression of most genes transcribed by RNA Pol II.


2004 ◽  
Vol 24 (14) ◽  
pp. 6241-6252 ◽  
Author(s):  
Kristina L. Carroll ◽  
Dennis A. Pradhan ◽  
Josh A. Granek ◽  
Neil D. Clarke ◽  
Jeffry L. Corden

ABSTRACT RNA polymerase II (Pol II) termination is triggered by sequences present in the nascent transcript. Termination of pre-mRNA transcription is coupled to recognition of cis-acting sequences that direct cleavage and polyadenylation of the pre-mRNA. Termination of nonpolyadenylated [non-poly(A)] Pol II transcripts in Saccharomyces cerevisiae requires the RNA-binding proteins Nrd1 and Nab3. We have used a mutational strategy to characterize non-poly(A) termination elements downstream of the SNR13 and SNR47 snoRNA genes. This approach detected two common RNA sequence motifs, GUA[AG] and UCUU. The first motif corresponds to the known Nrd1-binding site, which we have verified here by gel mobility shift assays. We also show that Nab3 protein binds specifically to RNA containing the UCUU motif. Taken together, our data suggest that Nrd1 and Nab3 binding sites play a significant role in defining non-poly(A) terminators. As is the case with poly(A) terminators, there is no strong consensus for non-poly(A) terminators, and the arrangement of Nrd1p and Nab3p binding sites varies considerably. In addition, the organization of these sequences is not strongly conserved among even closely related yeasts. This indicates a large degree of genetic variability. Despite this variability, we were able to use a computational model to show that the binding sites for Nrd1 and Nab3 can identify genes for which transcription termination is mediated by these proteins.


2018 ◽  
Vol 48 (3) ◽  
pp. 1215-1229 ◽  
Author(s):  
Sihyung Wang ◽  
Youngmi Jung ◽  
Jeongeun Hyun ◽  
Matthew Friedersdorf ◽  
Seh-Hoon Oh ◽  
...  

Background/Aims: Myofibroblasts (MF) derived from quiescent nonfibrogenic hepatic stellate cells (HSC) are the major sources of fibrous matrix in cirrhosis. Because many factors interact to regulate expansion and regression of MF-HSC populations, efforts to prevent cirrhosis by targeting any one factor have had limited success, motivating research to identify mechanisms that integrate these diverse inputs. As key components of RNA regulons, RNA binding proteins (RBPs) may fulfill this function by orchestrating changes in the expression of multiple genes that must be coordinately regulated to affect the complex phenotypic modifications required for HSC transdifferentiation. Methods: We profiled the transcriptomes of quiescent and MF-HSC to identify RBPs that were differentially-expressed during HSC transdifferentiation, manipulated the expression of the most significantly induced RBP, insulin like growth factor 2 binding protein 3 (Igf2bp3), and evaluated transcriptomic and phenotypic effects. Results: Depleting Igf2bp3 changed the expression of thousands of HSC genes, including multiple targets of TGF-β signaling, and caused HSCs to reacquire a less proliferative, less myofibroblastic phenotype. RNA immunoprecipitation assays demonstrated that some of these effects were mediated by direct physical interactions between Igf2bp3 and mRNAs that control proliferative activity and mesenchymal traits. Inhibiting TGF-β receptor-1 signaling revealed a microRNA-dependent mechanism that induces Igf2bp3. Conclusions: The aggregate results indicate that HSC transdifferentiation is ultimately dictated by Igf2bp3-dependent RNA regulons and thus, can be controlled simply by manipulating Igf2bp3.


1993 ◽  
Vol 13 (10) ◽  
pp. 6114-6123
Author(s):  
M J Matunis ◽  
E L Matunis ◽  
G Dreyfuss

The expression of RNA polymerase II transcripts can be regulated at the posttranscriptional level by RNA-binding proteins. Although extensively characterized in metazoans, relatively few RNA-binding proteins have been characterized in the yeast Saccharomyces cerevisiae. Three major proteins are cross-linked by UV light to poly(A)+ RNA in living S. cerevisiae cells. These are the 72-kDa poly(A)-binding protein and proteins of 60 and 50 kDa (S.A. Adam, T.Y. Nakagawa, M.S. Swanson, T. Woodruff, and G. Dreyfuss, Mol. Cell. Biol. 6:2932-2943, 1986). Here, we describe the 60-kDa protein, one of the major poly(A)+ RNA-binding proteins in S. cerevisiae. This protein, PUB1 [for poly(U)-binding protein 1], was purified by affinity chromatography on immobilized poly(rU), and specific monoclonal antibodies to it were produced. UV cross-linking demonstrated that PUB1 is bound to poly(A)+ RNA (mRNA or pre-mRNA) in living cells, and it was detected primarily in the cytoplasm by indirect immunofluorescence. The gene for PUB1 was cloned and sequenced, and the sequence was found to predict a 51-kDa protein with three ribonucleoprotein consensus RNA-binding domains and three glutamine- and asparagine-rich auxiliary domains. This overall structure is remarkably similar to the structures of the Drosophila melanogaster elav gene product, the human neuronal antigen HuD, and the cytolytic lymphocyte protein TIA-1. Each of these proteins has an important role in development and differentiation, potentially by affecting RNA processing. PUB1 was found to be nonessential in S. cerevisiae by gene replacement; however, further genetic analysis should reveal important features of this class of RNA-binding proteins.


1996 ◽  
Vol 16 (7) ◽  
pp. 3668-3678 ◽  
Author(s):  
M F Henry ◽  
P A Silver

RNA-binding proteins play many essential roles in the metabolism of nuclear pre-mRNA. As such, they demonstrate a myriad of dynamic behaviors and modifications. In particular, heterogeneous nuclear ribonucleoproteins (hnRNPs) contain the bulk of methylated arginine residues in eukaryotic cells. We have identified the first eukaryotic hnRNP-specific methyltransferase via a genetic screen for proteins that interact with an abundant poly(A)+-RNA-binding protein termed Npl3p. We have previously shown that npl3-1 mutants are temperature sensitive for growth and defective for export of mRNA from the nucleus. New mutants in interacting genes were isolated by their failure to survive in the presence of the npl3-1 allele. Four alleles of the same gene were identified in this manner. Cloning of the cognate gene revealed an encoded protein with similarity to methyltransferases that was termed HMT1 for hnRNP methyltransferase. HMT1 is not required for normal cell viability except when NPL3 is also defective. The Hmt1 protein is located in the nucleus. We demonstrate that Npl3p is methylated by Hmt1p both in vivo and in vitro. These findings now allow further exploration of the function of this previously uncharacterized class of enzymes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 254-254
Author(s):  
Xiaoying Bai ◽  
Joseph Lee ◽  
Jocelyn LeBlanc ◽  
Anna Sessa ◽  
Zhongan Yang ◽  
...  

Abstract Abstract 254 Vertebrate erythropoiesis is regulated by cell-specific transcription factors, RNA polymerase-associated basal machinery and chromatin remodeling factors. One critical chromatin factor is the transcriptional intermediary factor TIF1γ. Loss of TIF1γfunction in zebrafish mutant moonshine causes a profound anemia during embryogenesis, associated with a progressive decrease in expression of most erythroid mRNAs such as GATA1 and globin. TIF1γdeficiency has also been linked to TGF-βsignaling, although the in vivo mechanism for the anemia remains unclear. In an effort to find genes that interact with TIF1γ, we undertook a genetic suppressor screen in which we sought mutations in another gene that would restore blood to normal levels in the background of moonshine deficiency. Few suppressor screens have been done in vertebrate genetic models, and the haploid genetics of zebrafish was a great advantage for this screen. After screening 800 families of fish, two suppressor mutants, “eclipse” and “sunrise”, were found that could greatly rescue the erythroid defects in moonshine. The deficient gene in sunrise has been mapped to the locus of cdc73 (also known as parafibromin/HRPT2), a subunit of the PAF1 complex known to regulate RNA polymerase II (Pol II) elongation and chromatin modification. Furthermore, we have found that knocking down other subunits in the PAF1 complex also rescued the blood defect in moonshine, suggesting that PAF1 as a complex antagonizes TIF1γfunction during erythropoiesis. In yeast, PAF1 has been shown to physically or genetically interact with other elongation factors including DSIF, FACT and p-TEFb. We have found that knocking down DSIF, which is known to induce Pol II pausing during early elongation, also rescues moonshine. FACT and p-TEFb are both known to counteract DSIF to release Pol II from pausing, and knocking down FACT and p-TEFb caused the zebrafish to develop anemia. This strongly suggests that the erythroid defects in TIF1γdeficiency is caused by attenuated Pol II elongation. In an effort to understand the cell-specific phenotype of TIF1γdeficiency, we introduced a FLAG tagged TIF1γinto K562 erythroleukemia cells to pull down interacting proteins. Physical interactions were found among TIF1γ, FACT, p-TEFb and surprisingly the SCL hematopoietic transcription complex. The interaction with the SCL complex provides a cell-specific control over transcriptional elongation. The physical interactions, taken together with the genetic data, suggest a novel mechanism regulating erythropoiesis. TIF1γphysically and functionally links blood-specific transcription factors like SCL to Pol II-associated elongation machinery to regulate blood cell fate. In light of the recent discoveries of widespread Pol II stalling in the promoter proximal region in metazoan genomes, we speculate that similar mechanisms will regulate cell fates in other blood lineages as well as non-blood tissues. Disclosures: Zon: FATE Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Stemgent: Consultancy.


2006 ◽  
Vol 26 (7) ◽  
pp. 2688-2696 ◽  
Author(s):  
Eric J. Steinmetz ◽  
Sarah B. H. Ng ◽  
Joseph P. Cloute ◽  
David A. Brow

ABSTRACT Most eukaryotic genes are transcribed by RNA polymerase II (Pol II), including those that produce mRNAs and many noncoding functional RNAs. Proper expression of these genes requires efficient termination by Pol II to avoid transcriptional interference and synthesis of extended, nonfunctional RNAs. We previously described a pathway for yeast Pol II termination that involves recognition of an element in the nascent transcript by the essential RNA-binding protein Nrd1. The Nrd1-dependent pathway appears to be used primarily for nonpolyadenylated transcripts, such as the small nuclear and small nucleolar RNAs (snoRNAs). mRNAs are thought to use a distinct pathway that is coupled to cleavage and polyadenylation of the transcript. Here we show that the terminator elements for two yeast snoRNA genes also direct polyadenylated 3′-end formation in the context of an mRNA 3′ untranslated region. A selection for cis-acting terminator readthrough mutations identified conserved features of these elements, some of which are similar to cleavage and polyadenylation signals. A selection for trans-acting mutations that induce readthrough of both a snoRNA and an mRNA terminator yielded mutations in the Rpb3 and Rpb11 subunits of Pol II that define a remarkably discrete surface on the trailing end of the enzyme. Our results suggest that, at least in budding yeast, protein-coding and noncoding Pol II-transcribed genes use similar mechanisms to direct termination and that the termination signal is transduced through the Rpb3/Rpb11 heterodimer.


Sign in / Sign up

Export Citation Format

Share Document