scholarly journals Mitochondrial Evidence on the Phylogenetic Position of Caecilians (Amphibia: Gymnophiona)

Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 765-775
Author(s):  
Rafael Zardoya ◽  
Axel Meyer

Abstract The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNACys). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets—one combining protein-coding genes and the other combining tRNA genes—strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated.

ZooKeys ◽  
2018 ◽  
Vol 754 ◽  
pp. 127-139 ◽  
Author(s):  
Jun Li ◽  
Rui-Rui Lin ◽  
Yao-Yao Zhang ◽  
Kun-Jie Hu ◽  
Ya-Qi Zhao ◽  
...  

In the present study, the complete mitogenome of Theretrajaponica was sequenced and compared with other sequenced mitogenomes of Sphingidae species. The mitogenome of T.japonica, containing 37 genes (13 protein-coding genes, 22 tRNA genes, and two rRNA genes) and a region rich in adenine and thymine (AT-rich region), is a circular molecule with 15,399 base pairs (bp) in length. The order and orientation of the genes in the mitogenome are similar to those of other sequenced mitogenomes of Sphingidae species. All 13 protein-coding genes (PCGs) are initiated by ATN codons except for the cytochrome C oxidase subunit 1 gene (cox1) which is initiated by the codon CGA as observed in other lepidopteran insects. Cytochrome C oxidase subunit 2 gene (cox2) has the incomplete termination codon T and NADH dehydrogenase subunit 1 gene (nad1) terminates with TAG while the remainder terminates with TAA. Additionally, the codon distributions of the 13 PCGs revealed that Ile and Leu2 are the most frequently used codon families and codons CGG, CGC, CCG, CAG, and AGG are absent. The 431 bp AT-rich region includes the motif ATAGA followed by a 23 bp poly-T stretch, short tandem repeats (STRs) of TC and TA, two copies of a 28 bp repeat ‘ATTAAATTAATAAATTAA TATATTAATA’ and a poly-A element. Phylogenetic analyses within Sphingidae confirmed that T.japonica belongs to the Macroglossinae and showed that the phylogenetic relationship of T.japonica is closer to Ampelophagarubiginosa than Daphnisnerii. Phylogenetic analyses within Theretra demonstrate that T.japonica, T.jugurtha, T.suffusa, and T.capensis are clustered into one clade.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 995-1010 ◽  
Author(s):  
Rafael Zardoya ◽  
Axel Meyer

The complete nucleotide sequence of the 16,407-bp mitochondrial genome of the coelacanth (Latimeria chalumnae) was determined. The coelacanth mitochondrial genome order is identical to the consensus vertebrate gene order which is also found in all ray-finned fishes, the lungfish, and most tetrapods. Base composition and codon usage also conform to typical vertebrate patterns. The entire mitochondrial genome was PCR-amplified with 24 sets of primers that are expected to amplify homologous regions in other related vertebrate species. Analyses of the control region of the coelacanth mitochondrial genome revealed the existence of four 22-bp tandem repeats close to its 3′ end. The phylogenetic analyses of a large data set combining genes coding for rRNAs, tRNA, and proteins (16,140 characters) confirmed the phylogenetic position of the coelacanth as a lobe-finned fish; it is more closely related to tetrapods than to ray-finned fishes. However, different phylogenetic methods applied to this largest available molecular data set were unable to resolve unambiguously the relationship of the coelacanth to the two other groups of extant lobe-finned fishes, the lungfishes and the tetrapods. Maximum parsimony favored a lungfish/coelacanth or a lungfish/tetrapod sistergroup relationship depending on which transversion:transition weighting is assumed. Neighbor-joining and maximum likelihood supported a lungfish/tetrapod sistergroup relationship.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1042 ◽  
Author(s):  
Tanapan Sukee ◽  
Anson V. Koehler ◽  
Ross Hall ◽  
Ian Beveridge ◽  
Robin B. Gasser ◽  
...  

Nematodes of the genus Macropostrongyloides inhabit the large intestines or stomachs of macropodid (kangaroos and wallabies) and vombatid (wombats) marsupials. This study established the relationships of seven species of Macropostrongyloides using mitochondrial (mt) protein amino acid sequence data sets. Phylogenetic analyses revealed that species of Macropostrongyloides (M. lasiorhini, M. baylisi, M. yamagutii, M. spearei, M. mawsonae and M. woodi) from the large intestines of their hosts formed a monophyletic assemblage with strong nodal support to the exclusion of M. dissimilis from the stomach of the swamp wallaby. Furthermore, the mitochondrial protein-coding genes provided greater insights into the diversity and phylogeny of the genus Macropostrongyloides; such data sets could potentially be used to elucidate the relationships among other parasitic nematodes of Australian marsupials.


2014 ◽  
Vol 35 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Yongmin Li ◽  
Huabin Zhang ◽  
Xiaoyou Wu ◽  
Hui Xue ◽  
Peng Yan ◽  
...  

We determined the complete nucleotide sequence of the mitochondrial genome of Odorrana schmackeri (family Ranidae). The O. schmackeri mitogenome (18 302 bp) contained 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes and a single control region (CR). In the new mitogenome, the distinctive feature is the loss of tRNA-His, which could be explained by a hypothesis of gene substitution. The new sequence data was used to assess the phylogenetic relationships among 23 ranid species mostly from China using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses support two families (Ranidae, Dicroglossidae) for Chinese ranids. In Ranidae, we support the genus Amolops should be retained in the subfamily Raninae rather than in a distinct subfamily Amolopinae of its own. Meanwhile, the monophyly of the genus Odorrana was supported. Within Dicroglossidae, four tribes were well supported including Occidozygini, Dicroglossini, Limnonectini and Paini. More mitochondrial genomes and nuclear genes are required to decisively evaluate phylogenetic relationships of ranids.


1999 ◽  
Vol 47 (5) ◽  
pp. 499 ◽  
Author(s):  
S. Brown ◽  
G. Rouse ◽  
P. Hutchings ◽  
D. Colgan

DNA sequence data from for histone H3 (34 species), U2 snRNA (34 species) and two segments (D1 and D9–10 expansion regions) of 28S rDNA (28 and 26 species, respectively) have been collected to investigate the relationships of polychaetes. Representatives of all of the major morphologically identified clades were used, as well as members of the Sipuncula, Echiura, Turbellaria, Clitellata and Siboglinidae (formerly the phyla Pogonophora and Vestimentifera). Maximum parsimony analyses of the separate data sets gave conflicting results and none conformed closely to previous results based on morphology. Instead each data set provided corroboration of a few of the morphological groupings, usually pairing, though inconsistently, members of the same family. Higher groupings proposed on morphological grounds were rarely recovered. Maximum parsimony analysis of the combined data, excluding areas of uncertain alignment, recovered some morphological groupings such as Cirratulidae, Terebellidae, scale worms and eunicimorphs, and did not significantly contradict others. However, some expected groupings were not recovered. Surprisingly, the fanworms (Sabellidae and Serpulidae) were not shown as sister taxa, and monophyly of Phyllodocida, a morphologically well corroborated clade, required four more steps than most parsimonious trees. Aciculata was not seen in our analyses, although it was the most strongly supported large clade in Rouse and Fauchald (1997, Cladistics and polychaetes. Zoologica Scripta 26, 138–204). Trees constrained to show Aciculata as monophyletic were 18 steps longer than the most parsimonious trees. If trees are rooted on sipunculans rather than the nematode, Aciculata is nearly recovered, being rendered paraphyletic by the inclusion of the sister-pair of Oweniidae and Chaetopteridae. As suggested by some recent morphological and molecular analyses, Siboglinidae and Clitellata may well have sister groups among polychaetes. The morphologically aberrant Sternaspidae are closest to members of Terebellida in the present analyses, supporting the placement of Rouse and Fauchald. Interesting results deserving further assessment concern the placement of Chaetopteridae, Oweniidae and Sipuncula.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Camila Lorenz ◽  
João Marcelo Pereira Alves ◽  
Peter Gordon Foster ◽  
Maria Anice Mureb Sallum ◽  
Lincoln Suesdek

Abstract Background The tribe Sabethini (Diptera: Culicidae) contains important vectors of the yellow fever virus and presents remarkable morphological and ecological diversity unequalled in other mosquito groups. However, there is limited information about mitochondrial genomes (mitogenomes) from these species. As mitochondrial genetics has been fundamental for posing evolutionary hypotheses and identifying taxonomical markers, in this study we sequenced the first sabethine mitogenomes: Sabethes undosus, Trichoprosopon pallidiventer, Runchomyia reversa, Limatus flavisetosus, and Wyeomyia confusa. In addition, we performed phylogenetic analyses of Sabethini within Culicidae and compared its mitogenomic architecture to that of other insects. Results Similar to other insects, the Sabethini mitogenome contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. However, the gene order is not the same as that in other mosquitoes; the tyrosine (Y) and cysteine (C) tRNA genes have translocated. In general, mitogenome rearrangements within insects are uncommon events; the translocation reported here is unparalleled among Culicidae and can be considered an autapomorphy for the Neotropical sabethines. Conclusions Our study provides clear evidence of gene rearrangements in the mitogenomes of these Neotropical genera in the tribe Sabethini. Gene order can be informative at the taxonomic level of tribe. The translocations found, along with the mitogenomic sequence data and other recently published findings, reinforce the status of Sabethini as a well-supported monophyletic taxon. Furthermore, T. pallidiventer was recovered as sister to R. reversa, and both were placed as sisters of other Sabethini genera (Sabethes, Wyeomyia, and Limatus).


ZooKeys ◽  
2019 ◽  
Vol 835 ◽  
pp. 43-63 ◽  
Author(s):  
Jin–Jun Cao ◽  
Ying Wang ◽  
Yao–Rui Huang ◽  
Wei–Hai Li

In this study, two new mitochondrial genomes (mitogenomes) ofMesonemourametafiligeraandMesonemouratritaeniafrom the family Nemouridae (Insecta: Plecoptera) were sequenced. TheMesonemourametafiligeramitogenome was a 15,739 bp circular DNA molecule, which was smaller than that ofM.tritaenia(15,778 bp) due to differences in the size of the A+T-rich region. Results show that gene content, gene arrangement, base composition, and codon usage were highly conserved in two species. Ka/Ks ratios analyses of protein-coding genes revealed that the highest and lowest rates were found in ND6 and COI and that all these genes were evolving under purifying selection. All tRNA genes in nemourid mitogenomes had a typical cloverleaf secondary structure, except for tRNASer(AGN)which appeared to lack the dihydrouridine arm. The multiple alignments of nemourid lrRNA and srRNA genes showed that sequences of three species were highly conserved. All the A+T-rich region included tandem repeats regions and stem-loop structures. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results. Amphinemurinae and Nemourinae were sister-groups and the family Nemouridae was placed as sister to Capniidae and Taeniopterygidae.


Zootaxa ◽  
2017 ◽  
Vol 4243 (1) ◽  
pp. 125 ◽  
Author(s):  
YING WANG ◽  
JINJUN CAO ◽  
WEIHAI LI

We present the complete mitochondrial (mt) genome sequence of the stonefly, Styloperla spinicercia Wu, 1935 (Plecoptera: Styloperlidae), the type species of the genus Styloperla and the first complete mt genome for the family Styloperlidae. The genome is circular, 16,129 base pairs long, has an A+T content of 70.7%, and contains 37 genes including the large and small ribosomal RNA (rRNA) subunits, 13 protein coding genes (PCGs), 22 tRNA genes and a large non-coding region (CR). All of the PCGs use the standard initiation codon ATN except ND1 and ND5, which start with TTG and GTG. Twelve of the PCGs stop with conventional terminal codons TAA and TAG, except ND5 which shows an incomplete terminator signal T. All tRNAs have the classic clover-leaf structures with the dihydrouridine (DHU) arm of tRNASer(AGN) forming a simple loop. Secondary structures of the two ribosomal RNAs are presented with reference to previous models. The structural elements and the variable numbers of tandem repeats are described within the control region. Phylogenetic analyses using both Bayesian (BI) and Maximum Likelihood (ML) methods support the previous hypotheses regarding family level relationships within the Pteronarcyoidea. The genetic distance calculated based on 13 PCGs and two rRNAs between Styloperla sp. and S. spinicercia is provided and interspecific divergence is discussed. 


Zootaxa ◽  
2010 ◽  
Vol 2665 (1) ◽  
pp. 51 ◽  
Author(s):  
ELENA K. KUPRIYANOVA ◽  
EIJIROH NISHI

A collection of Serpulidae (Annelida, Polychaeta) from the Patton-Murray Seamounts, Gulf of Alaska, USA contained three species Apomatus voightae n. sp., Bathyvermilia eliasoni n. comb., and Hyalopomatus biformis (Hartman, 1960). Apomatus voightae n. sp. differed from all other Apomatus spp. and from all known serpulid species by very unusual flat and ribbon-like branchial radioles as well by details of chaetal structure. Vermiliopsis eliasoni Zibrowius (1970) previously known from Atlantic and Mediterranean, was transferred to the genus Bathyvermilia Zibrowius, 1973. Hyalopomatus biformis is a deep-sea species distributed in the north-eastern Pacific from Alaska to California, USA. All serpulids were described in detail and their chaetal structure elucidated with the help of scanning electron microscopy. Molecular sequence data (18S rDNA) were aligned to a recently published serpulid data set and maximum parsimony analysis was performed to examine the phylogenetic position of the species and confirm their identification. Hyalopomatus biformis formed a sister group with Laminatubus alvini, Apomatus voightae n. sp. formed a sister group with Apomatus globifer, and Bathyvermilia eliasoni formed a weakly supported polytomy with Chitinopoma serrula, Protula tubularia and Apomatus spp. We briefly discussed biogeographic affinities of the serpulids from the PattonMurray Seamounts in the light of seamount ecology and biogeography.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 724 ◽  
Author(s):  
Xiaolei Yu ◽  
Wei Tan ◽  
Huanyu Zhang ◽  
Weiling Jiang ◽  
Han Gao ◽  
...  

In this study, we report the complete mitochondrial genome of Harpalus sinicus (occasionally named as the Chinese ground beetle) which is the first mitochondrial genome for Harpalus. The mitogenome is 16,521 bp in length, comprising 37 genes, and a control region. The A + T content of the mitogenome is as high as 80.6%. A mitochondrial origins of light-strand replication (OL)-like region is found firstly in the insect mitogenome, which can form a stem-loop hairpin structure. Thirteen protein-coding genes (PCGs) share high homology, and all of them are under purifying selection. All tRNA genes (tRNAs) can be folded into the classic cloverleaf secondary structures except tRNA-Ser (GCU), which lacks a dihydrouridine (DHU) stem. The secondary structure of two ribosomal RNA genes (rRNAs) is predicted based on previous insect models. Twelve types of tandem repeats and two stem-loop structures are detected in the control region, and two stem-loop structures may be involved in the initiation of replication and transcription. Additionally, phylogenetic analyses based on mitogenomes suggest that Harpalus is an independent lineage in Carabidae, and is closely related to four genera (Abax, Amara, Stomis, and Pterostichus). In general, this study provides meaningful genetic information for Harpalus sinicus and new insights into the phylogenetic relationships within the Carabidae.


Sign in / Sign up

Export Citation Format

Share Document