scholarly journals The Cloning and Molecular Analysis of pawn-B in Paramecium tetraurelia

Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.

2003 ◽  
Vol 69 (2) ◽  
pp. 1263-1269 ◽  
Author(s):  
Yong-Soon Hwang ◽  
Eung-Soo Kim ◽  
Sándor Biró ◽  
Cha-Yong Choi

ABSTRACT To isolate a gene for stimulating avermectin production, a genomic library of Streptomyces avermitilis ATCC 31267 was constructed in Streptomyces lividans TK21 as the host strain. An 8.0-kb DNA fragment that significantly stimulated actinorhodin and undecylprodigiosin production was isolated. When wild-type S. avermitilis was transformed with the cloned fragment, avermectin production increased approximately 3.5-fold. The introduction of this fragment into high-producer (ATCC 31780) and semi-industrial (L-9) strains also resulted in an increase of avermectin production by more than 2.0- and 1.4-fold, respectively. Subclones were studied to locate the minimal region involved in stimulation of pigmented-antibiotic and avermectin production. An analysis of the nucleotide sequence of the entire DNA fragment identified eight complete and one incomplete open reading frame. All but one of the deduced proteins exhibited strong homology (68 to 84% identity) to the hypothetical proteins of Streptomyces coelicolor A3(2). The orfX gene product showed no significant similarity to any other protein in the databases, and an analysis of its sequence suggested that it was a putative membrane protein. Although the nature of the stimulatory effect is still unclear, the disruption of orfX revealed that this gene was intrinsically involved in the stimulation of avermectin production in S. avermitilis.


1988 ◽  
Vol 8 (9) ◽  
pp. 3898-3905 ◽  
Author(s):  
C Huxley ◽  
T Williams ◽  
M Fried

The mouse surfeit locus is unusual in that it contains a number of closely clustered genes (Surf-1, -2, and -4) that alternate in their direction of transcription (T. Williams, J. Yon, C. Huxley, and M. Fried, Proc. Natl. Acad. Sci. USA 85:3527-3530, 1988). The heterogeneous 5' ends of Surf-1 and Surf-2 are separated by 15 to 73 base pairs (bp), and the 3' ends of Surf-2 and Surf-4 overlap by 133 bp (T. Williams and M. Fried, Mol. Cell. Biol. 6:4558-4569, 1986; T. Williams and M. Fried, Nature (London) 322:275-279, 1986). A fourth gene in this locus, Surf-3, which is a member of a multigene family, has been identified. The poly(A) addition site of Surf-3 lies only 70 bp from the poly(A) addition site of Surf-1. Transcription of Surf-3 has been studied in the absence of the other members of its multigene family after transfection of a cloned genomic mouse DNA fragment, containing the Surf-3 gene, into heterologous monkey cells. Surf-3 specifies a highly expressed 1.0-kilobase mRNA that contains a long open reading frame of 266 amino acids, which would encode a highly basic polypeptide (23% Arg plus Lys). The other members of the Surf-3 multigene family are predominantly, if not entirely, intronless pseudogenes with the hallmarks of being generated by reverse transcription. The role of the very tight clustering on regulation of expression of the genes in the surfeit locus is discussed.


2003 ◽  
Vol 16 (9) ◽  
pp. 760-768 ◽  
Author(s):  
Won-Bo Shim ◽  
Larry D. Dunkle

The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.


2000 ◽  
Vol 203 (6) ◽  
pp. 1059-1070 ◽  
Author(s):  
U. Nagel ◽  
H. Machemer

Wild-type and the morphological mutant kin 241 of Paramecium tetraurelia showed improved orientation away from the centre of gravity (negative gravitaxis) when accelerations were increased from 1 to 7 g. Gravitaxis was more pronounced in the mutant. A correlation between the efficiency of orientation and the applied g value suggests a physical basis for gravitaxis. Transiently enhanced rates of reversal of the swimming direction coincided with transiently enhanced gravitaxis because reversals occurred more often in downward swimmers than in upward swimmers. The results provide evidence of a physiological modulation of gravitaxis by means of the randomizing effect of depolarization-dependent swimming reversals. Gravity bimodally altered propulsion rates of wild-type P. tetraurelia so that sedimentation was partly antagonized in upward and downward swimmers (negative gravikinesis). In the mutant, only increases in propulsion were observed, although the orientation-dependent sensitivity of the gravikinetic response was the same as in the wild-type population. Observed swimming speed and sedimentation rates in the wild-type and mutant cells were linearly related to acceleration, allowing the determination of gravikinesis as a linear (and so far non-saturating) function of gravity.


1991 ◽  
Vol 11 (5) ◽  
pp. 2593-2608 ◽  
Author(s):  
D X Tishkoff ◽  
A W Johnson ◽  
R D Kolodner

Vegetatively grown Saccharomyces cerevisiae cells contain an activity that promotes a number of homologous pairing reactions. A major portion of this activity is due to strand exchange protein 1 (Sep1), which was originally purified as a 132,000-Mr species (R. Kolodner, D. H. Evans, and P. T. Morrison, Proc. Natl. Acad. Sci. USA 84:5560-5564, 1987). The gene encoding Sep1 was cloned, and analysis of the cloned gene revealed a 4,587-bp open reading frame capable of encoding a 175,000-Mr protein. The protein encoded by this open reading frame was overproduced and purified and had a relative molecular weight of approximately 160,000. The 160,000-Mr protein was at least as active in promoting homologous pairing as the original 132,000-Mr species, which has been shown to be a fragment of the intact 160,000-Mr Sep1 protein. The SEP1 gene mapped to chromosome VII within 20 kbp of RAD54. Three Tn10LUK insertion mutations in the SEP1 gene were characterized. sep1 mutants grew more slowly than wild-type cells, showed a two- to fivefold decrease in the rate of spontaneous mitotic recombination between his4 heteroalleles, and were delayed in their ability to return to growth after UV or gamma irradiation. Sporulation of sep1/sep1 diploids was defective, as indicated by both a 10- to 40-fold reduction in spore formation and reduced spore viability of approximately 50%. The majority of sep1/sep1 diploid cells arrested in meiosis after commitment to recombination but prior to the meiosis I cell division. Return-to-growth experiments showed that sep1/sep1 his4X/his4B diploids exhibited a five- to sixfold greater meiotic induction of His+ recombinants than did isogenic SEP1/SEP1 strains. sep1/sep1 mutants also showed an increased frequency of exchange between HIS4, LEU2, and MAT and a lack of positive interference between these markers compared with wild-type controls. The interaction between sep1, rad50, and spo13 mutations suggested that SEP1 acts in meiosis in a pathway that is parallel to the RAD50 pathway.


1998 ◽  
Vol 44 (7) ◽  
pp. 657-666 ◽  
Author(s):  
Phillip Aldridge ◽  
Frank Bernhard ◽  
Peter Bugert ◽  
David L Coplin ◽  
Klaus Geider

In a genomic library of Erwinia amylovora, a locus has been identified that can suppress an Erwinia stewartii rcsA mutant. In addition, the locus induced a mucoid sticky phenotype of colonies in a wild-type strain of Erwinia stewartii and increased exopolysaccharide synthesis in several species of bacteria belonging to the genus Erwinia. An open reading frame was identified at this locus encoding a 225 amino acid protein that contained a helix-turn-helix motif typical of transcriptional regulators. The corresponding gene was subsequently named rcsV (regulator of capsular synthesis affecting viscosity). A mutant of rcsV in wild-type Erwinia amylovora had no detectable phenotype and produced typical levels of amylovoran under laboratory conditions. The rcsV gene on a high copy number plasmid under the control of its own promoter did not alter amylovoran production, in contrast to in-frame fusions of the structural gene in expression vectors. Since even the lac promoter was inert in the expression of rcsV, a DNA-binding protein could inhibit transcription of the gene in Erwinia amylovora. On the other hand, an Erwinia amylovora rcsA mutant was suppressed by rcsV when its promoter was replaced and the structural gene fused in-frame with lacZ' or malE. Northern blots, with total RNA from Erwinia amylovora, or promoter analysis using the GUS reporter gene did not show expression of rcsV in Erwinia amylovora, although primer extension analysis did. RcsV could be a component involved in the regulation of amylovoran synthesis, and gene expression may require an unknown external signal during the life cycle or pathogenesis of Erwinia amylovora. Key words: amylovoran, fire blight, rcsA-like activator, fusion protein.


1998 ◽  
Vol 64 (5) ◽  
pp. 1831-1836 ◽  
Author(s):  
Pekka Varmanen ◽  
Terhi Rantanen ◽  
Airi Palva ◽  
Soile Tynkkynen

ABSTRACT A peptidase gene expressingl-proline-β-naphthylamide-hydrolyzing activity was cloned from a gene library of Lactobacillus rhamnosus 1/6 isolated from cheese. Peptidase-expressing activity was localized in a 1.5-kbSacI fragment. A sequence analysis of the SacI fragment revealed the presence of one complete open reading frame (ORF1) that was 903 nucleotides long. The ORF1-encoded 34.2-kDa protein exhibited 68% identity with the PepR protein from Lactobacillus helveticus. Additional sequencing revealed the presence of another open reading frame (ORF2) following pepR; this open reading frame was 459 bp long. Northern (RNA) and primer extension analyses indicated that pepR is expressed both as a monocistronic transcriptional unit and as a dicistronic transcriptional unit with ORF2. Gene replacement was used to construct a PepR-negative strain of L. rhamnosus. PepR was shown to be the primary enzyme capable of hydrolyzing Pro-Leu in L. rhamnosus. However, the PepR-negative mutant did not differ from the wild type in its ability to grow and produce acid in milk. The clonedpepR expressed activity against dipeptides with N-terminal proline residues. Also, Met-Ala, Leu-Leu, and Leu-Gly-Gly and the chromogenic substrates l-leucine-β-naphthylamide andl-phenylalanine-β-naphthylamide were hydrolyzed by the PepR of L. rhamnosus.


2006 ◽  
Vol 87 (9) ◽  
pp. 2563-2569 ◽  
Author(s):  
Minggang Fang ◽  
Yingchao Nie ◽  
Qian Wang ◽  
Fei Deng ◽  
Ranran Wang ◽  
...  

Open reading frame 132 (Ha132) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) is a homologue of per os infectivity factor 2 (pif-2) of Spodoptera exigua multiple nucleopolyhedrovirus. Sequence analysis indicated that Ha132 encoded a protein of 383 aa with a predicted molecular mass of 44.5 kDa. Alignment of HA132 and its baculovirus homologues revealed that HA132 was highly conserved among baculoviruses, with 14 absolutely conserved cysteine residues. RT-PCR indicated that Ha132 was first transcribed at 24 h post-infection. Western blot analysis showed that a 43 kDa band was detectable in HearNPV-infected HzAM1 cells from 36 h post-infection. Western blots also indicated that HA132 was a component of the occlusion-derived virus, but not of budded virus. Deletion of Ha132 from HearNPV abolished per os infectivity, but had no effect on the infectivity of the budded virus phenotype.


2008 ◽  
Vol 54 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Tibor Simonics ◽  
Anna Maráz

The ATP sulphurylase gene of Schizosaccharomyces pombe has been cloned by complementation of cysteine auxotrophy of a selenate-resistant mutant, which supposedly had a defect in ATP sulphurylase. A sulphate nonutilizing (cysteine auxotrophic) and selenate-resistant mutant of S. pombe was transformed with a wild-type S. pombe genomic library and sulphate-utilizing clones were isolated. The open reading frame encoding the ATP sulphurylase enzyme was found to be responsible for the restoration of sulphate assimilation. Transformants became as sensitive for selenate as the wild-type strain and produced a comparable amount of ATP sulphurylase as the prototrophic strains. The cloned ATP sulphurylase gene (sua1) proved to be an efficient selection marker in an ARS vector, when different isogenic or nonisogenic S. pombe selenate-resistant mutants were used as cloning hosts. Complementation of sua1– mutations by sua1-bearing multicopy vectors functions as a useful dual positive and negative selection marker. The cloned sua1 gene also complemented the met3 (ATP sulphurylase deficient) mutation in Saccharomyces cerevisiae .


1985 ◽  
Vol 101 (6) ◽  
pp. 2374-2382 ◽  
Author(s):  
M Bernstein ◽  
W Hoffmann ◽  
G Ammerer ◽  
R Schekman

SEC53, a gene that is required for completion of assembly of proteins in the endoplasmic reticulum in yeast, has been cloned, sequenced, and the product localized by cell fractionation. Complementation of a sec53 mutation is achieved with unique plasmids from genomic or cDNA expression banks. These inserts contain the authentic gene, a cloned copy of which integrates at the sec53 locus. An open reading frame in the insert predicts a 29-kD protein with no significant hydrophobic character. This prediction is confirmed by detection of a 28-kD protein overproduced in cells that carry SEC53 on a multicopy plasmid. To follow Sec53p more directly, a LacZ-SEC53 gene fusion has been constructed which allows the isolation of a hybrid protein for use in production of antibody. With such an antibody, quantitative immune decoration has shown that the sec53-6 mutation decreases the level of Sec53p at 37 degrees C, while levels comparable to wild-type are seen at 24 degrees C. An eightfold overproduction of Sec53p accompanies transformation of cells with a multicopy plasmid containing SEC53. Cell fractionation, performed with conditions that preserve the lumenal content of the endoplasmic reticulum (ER), shows Sec53p highly enriched in the cytosol fraction. We suggest that Sec53p acts indirectly to facilitate assembly in the ER, possibly by interacting with a stable ER component, or by providing a small molecule, other than an oligosaccharide precursor, necessary for the assembly event.


Sign in / Sign up

Export Citation Format

Share Document