Characterization of a gene locus from Erwinia amylovora with regulatory functions in exopolysaccharide synthesis of Erwinia spp.

1998 ◽  
Vol 44 (7) ◽  
pp. 657-666 ◽  
Author(s):  
Phillip Aldridge ◽  
Frank Bernhard ◽  
Peter Bugert ◽  
David L Coplin ◽  
Klaus Geider

In a genomic library of Erwinia amylovora, a locus has been identified that can suppress an Erwinia stewartii rcsA mutant. In addition, the locus induced a mucoid sticky phenotype of colonies in a wild-type strain of Erwinia stewartii and increased exopolysaccharide synthesis in several species of bacteria belonging to the genus Erwinia. An open reading frame was identified at this locus encoding a 225 amino acid protein that contained a helix-turn-helix motif typical of transcriptional regulators. The corresponding gene was subsequently named rcsV (regulator of capsular synthesis affecting viscosity). A mutant of rcsV in wild-type Erwinia amylovora had no detectable phenotype and produced typical levels of amylovoran under laboratory conditions. The rcsV gene on a high copy number plasmid under the control of its own promoter did not alter amylovoran production, in contrast to in-frame fusions of the structural gene in expression vectors. Since even the lac promoter was inert in the expression of rcsV, a DNA-binding protein could inhibit transcription of the gene in Erwinia amylovora. On the other hand, an Erwinia amylovora rcsA mutant was suppressed by rcsV when its promoter was replaced and the structural gene fused in-frame with lacZ' or malE. Northern blots, with total RNA from Erwinia amylovora, or promoter analysis using the GUS reporter gene did not show expression of rcsV in Erwinia amylovora, although primer extension analysis did. RcsV could be a component involved in the regulation of amylovoran synthesis, and gene expression may require an unknown external signal during the life cycle or pathogenesis of Erwinia amylovora. Key words: amylovoran, fire blight, rcsA-like activator, fusion protein.


1998 ◽  
Vol 180 (4) ◽  
pp. 773-784 ◽  
Author(s):  
Fitnat H. Yildiz ◽  
Gary K. Schoolnik

ABSTRACT Vibrio cholerae is known to persist in aquatic environments under nutrient-limiting conditions. To analyze the possible involvement of the alternative sigma factor encoded byrpoS, which is shown to be important for survival during nutrient deprivation in several other bacterial species, a V. cholerae rpoS homolog was cloned by functional complementation of an Escherichia coli mutant by using a wild-type genomic library. Sequence analysis of the complementing clone revealed an 1.008-bp open reading frame which is predicted to encode a 336-amino-acid protein with 71 to 63% overall identity to other reported rpoS gene products. To determine the functional role of rpoS in V. cholerae, we inactivatedrpoS by homologous recombination. V. choleraestrains lacking rpoS are impaired in the ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and carbon starvation. These results suggest that rpoS may be required for the persistence of V. cholerae in aquatic habitats. In addition, the rpoSmutation led to reduced production or secretion of hemagglutinin/protease. However, rpoS is not critical for in vivo survival, as determined by an infant mouse intestinal competition assay.



Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.



1990 ◽  
Vol 10 (8) ◽  
pp. 4221-4232
Author(s):  
B Repetto ◽  
A Tzagoloff

Yeast mutants assigned to the pet complementation group G104 were found to lack alpha-ketoglutarate dehydrogenase activity as a result of mutations in the dihydrolipoyl transsuccinylase (KE2) component of the complex. The nuclear gene KGD2, coding for yeast KE2, was cloned by transformation of E250/U6, a G104 mutant, with a yeast genomic library. Analysis of the KGD2 sequence revealed an open reading frame encoding a protein with a molecular weight of 52,375 and 42% identities to the KE2 component of Escherichia coli alpha-ketoglutarate dehydrogenase complex. Disruption of the chromosomal copy of KGD2 in a respiratory-competent haploid yeast strain elicited a growth phenotype similar to that of G104 mutants and abolished the ability to mitochondria to catalyze the reduction of NAD+ by alpha-ketoglutarate. The expression of KGD2 was transcriptionally regulated by glucose. Northern (RNA) analysis of poly(A)+ RNA indicated the existence of two KGD2 transcripts differing in length by 150 nucleotides. The concentrations of both RNAs were at least 10 times lower in glucose (repressed)- than in galactose (derepressed)-grown cells. Different 5'-flanking regions of KGD2 were fused to the lacZ gene of E. coli in episomal plasmids, and the resultant constructs were tested for expression of beta-galactosidase in wild-type yeast cells and in hap2 and hap3 mutants. Results of the lacZ fusion assays indicated that transcription of KGD2 is activated by the HAP2 and HAP3 proteins. The regulated expression of KGD2 was found to depend on sequences that map to a region 244 to 484 nucleotides upstream of the structural gene. This region contains two short sequence elements that differ by one nucleotide from the consensus core (5'-TN[A/G]TTGGT-3') that has been proposed to be essential for binding of the HAP activation complex. These data together with earlier reports on the regulation of the KGD1 and LPD1 genes for the alpha-ketoglutarate and dihydrolipoyl dehydrogenases indicate that all three enzyme components of the complex are catabolite repressed and subject to positive regulation by the HAP2 and HAP3 proteins.



2008 ◽  
Vol 54 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Tibor Simonics ◽  
Anna Maráz

The ATP sulphurylase gene of Schizosaccharomyces pombe has been cloned by complementation of cysteine auxotrophy of a selenate-resistant mutant, which supposedly had a defect in ATP sulphurylase. A sulphate nonutilizing (cysteine auxotrophic) and selenate-resistant mutant of S. pombe was transformed with a wild-type S. pombe genomic library and sulphate-utilizing clones were isolated. The open reading frame encoding the ATP sulphurylase enzyme was found to be responsible for the restoration of sulphate assimilation. Transformants became as sensitive for selenate as the wild-type strain and produced a comparable amount of ATP sulphurylase as the prototrophic strains. The cloned ATP sulphurylase gene (sua1) proved to be an efficient selection marker in an ARS vector, when different isogenic or nonisogenic S. pombe selenate-resistant mutants were used as cloning hosts. Complementation of sua1– mutations by sua1-bearing multicopy vectors functions as a useful dual positive and negative selection marker. The cloned sua1 gene also complemented the met3 (ATP sulphurylase deficient) mutation in Saccharomyces cerevisiae .



1999 ◽  
Vol 181 (21) ◽  
pp. 6642-6649 ◽  
Author(s):  
Jae Kweon Park ◽  
Kumiko Shimono ◽  
Nobuhisa Ochiai ◽  
Kazutaka Shigeru ◽  
Masako Kurita ◽  
...  

ABSTRACT The extracellular chitosanase (34,000 M r) produced by a novel gram-negative bacterium Matsuebacter chitosanotabidus 3001 was purified. The optimal pH of this chitosanase was 4.0, and the optimal temperature was between 30 and 40°C. The purified chitosanase was most active on 90% deacetylated colloidal chitosan and glycol chitosan, both of which were hydrolyzed in an endosplitting manner, but this did not hydrolyze chitin, cellulose, or their derivatives. Among potential inhibitors, the purified chitosanase was only inhibited by Ag+. Internal amino acid sequences of the purified chitosanase were obtained. A PCR fragment corresponding to one of these amino acid sequences was then used to screen a genomic library for the entire choA gene encoding chitosanase. Sequencing of the choA gene revealed an open reading frame encoding a 391-amino-acid protein. The N-terminal amino acid sequence had an excretion signal, but the sequence did not show any significant homology to other proteins, including known chitosanases. The 80-amino-acid excretion signal of ChoA fused to green fluorescent protein was functional in Escherichia coli. Taken together, these results suggest that we have identified a novel, previously unreported chitosanase.



2003 ◽  
Vol 69 (2) ◽  
pp. 1263-1269 ◽  
Author(s):  
Yong-Soon Hwang ◽  
Eung-Soo Kim ◽  
Sándor Biró ◽  
Cha-Yong Choi

ABSTRACT To isolate a gene for stimulating avermectin production, a genomic library of Streptomyces avermitilis ATCC 31267 was constructed in Streptomyces lividans TK21 as the host strain. An 8.0-kb DNA fragment that significantly stimulated actinorhodin and undecylprodigiosin production was isolated. When wild-type S. avermitilis was transformed with the cloned fragment, avermectin production increased approximately 3.5-fold. The introduction of this fragment into high-producer (ATCC 31780) and semi-industrial (L-9) strains also resulted in an increase of avermectin production by more than 2.0- and 1.4-fold, respectively. Subclones were studied to locate the minimal region involved in stimulation of pigmented-antibiotic and avermectin production. An analysis of the nucleotide sequence of the entire DNA fragment identified eight complete and one incomplete open reading frame. All but one of the deduced proteins exhibited strong homology (68 to 84% identity) to the hypothetical proteins of Streptomyces coelicolor A3(2). The orfX gene product showed no significant similarity to any other protein in the databases, and an analysis of its sequence suggested that it was a putative membrane protein. Although the nature of the stimulatory effect is still unclear, the disruption of orfX revealed that this gene was intrinsically involved in the stimulation of avermectin production in S. avermitilis.



2000 ◽  
Vol 182 (11) ◽  
pp. 3002-3007 ◽  
Author(s):  
Damian P. Wright ◽  
Catriona G. Knight ◽  
Shanthi G. Parkar ◽  
David L. Christie ◽  
Anthony M. Roberton

ABSTRACT A gene encoding the mucin-desulfating sulfatase inPrevotella strain RS2 has been cloned, sequenced, and expressed in an active form. A 600-bp PCR product generated using primers designed from amino acid sequence data was used to isolate a 5,058-bp genomic DNA fragment containing the mucin-desulfating sulfatase gene. A 1,551-bp open reading frame encoding the sulfatase proprotein was identified, and the deduced 517-amino-acid protein minus its signal sequence corresponded well with the published mass of 58 kDa estimated by denaturing gel electrophoresis. The sulfatase sequence showed homology to aryl- and nonarylsulfatases with different substrate specificities from the sulfatases of other organisms. No sulfatase activity could be detected when the sulfatase gene was cloned into Escherichia coli expression vectors. However, cloning the gene into aBacteroides expression vector did produce active sulfatase. This is the first mucin-desulfating sulfatase to be sequenced and expressed. A second open reading frame (1,257 bp) was identified immediately upstream from the sulfatase gene, coding in the opposite direction. Its sequence has close homology to iron-sulfur proteins that posttranslationally modify other sulfatases. By analogy, this protein is predicted to catalyze the modification of a serine group to a formylglycine group at the active center of the mucin-desulfating sulfatase, which is necessary for enzymatic activity.



2000 ◽  
Vol 182 (23) ◽  
pp. 6724-6731 ◽  
Author(s):  
Lise Barthelmebs ◽  
Bruno Lecomte ◽  
Charles Divies ◽  
Jean-François Cavin

ABSTRACT Pediococcus pentosaceus displays a substrate-inducible phenolic acid decarboxylase (PAD) activity on p-coumaric acid. Based on DNA sequence homologies between the three PADs previously cloned, a DNA probe of the Lactobacillus plantarum pdc gene was used to screen a P. pentosaceus genomic library in order to clone the corresponding gene of this bacteria. One clone detected with this probe displayed a low PAD activity. Subcloning of this plasmid insertion allowed us to determine the part of the insert which contains a 534-bp open reading frame (ORF) coding for a 178-amino-acid protein presenting 81.5% of identity with L. plantarum PDC enzyme. This ORF was identified as thepadA gene. A second ORF was located just downstream of thepadA gene and displayed 37% identity with the product of the Bacillus subtilis yfiO gene. Subcloning, transcriptional analysis, and expression studies with Escherichia coli of these two genes under the padA gene promoter, demonstrated that the genes are organized in an autoregulated bicistronic operonic structure and that the gene located upstream of the padA gene encodes the transcriptional repressor of thepadA gene. Transcription of this pad operon inP. pentosaceus is acid phenol dependent.



2001 ◽  
Vol 45 (12) ◽  
pp. 3387-3392 ◽  
Author(s):  
Clemente Montero ◽  
Guaniri Mateu ◽  
Rosalva Rodriguez ◽  
Howard Takiff

ABSTRACT The fluoroquinolones (FQ) are used in the treatment ofMycobacterium tuberculosis, but the development of resistance could limit their effectiveness. FQ resistance (FQR) is a multistep process involving alterations in the type II topoisomerases and perhaps in the regulation of efflux pumps, but several of the steps remain unidentified. Recombinant plasmid pGADIV was selected from a genomic library of wild-type (WT), FQ-sensitive M. smegmatisby its ability to confer low-level resistance to sparfloxacin (SPX). In WT M. smegmatis, pGADIV increased the MICs of ciprofloxacin (CIP) by fourfold and of SPX by eightfold, and inM. bovis BCG it increased the MICs of both CIP and SPX by fourfold. It had no effect on the accumulation of14C-labeled CIP or SPX. The open reading frame responsible for the increase in FQR, mfpA, encodes a putative protein belonging to the family of pentapeptides, in which almost every fifth amino acid is either leucine or phenylalanine. Very similar proteins are also present in M.tuberculosis and M. avium. The MICs of CIP and SPX were lower for an M.smegmatis mutant strain lacking an intactmfpA gene than for the WT strain, suggesting that, by some unknown mechanism, the gene product plays a role in determining the innate level of FQR in M.smegmatis.



1990 ◽  
Vol 10 (8) ◽  
pp. 4221-4232 ◽  
Author(s):  
B Repetto ◽  
A Tzagoloff

Yeast mutants assigned to the pet complementation group G104 were found to lack alpha-ketoglutarate dehydrogenase activity as a result of mutations in the dihydrolipoyl transsuccinylase (KE2) component of the complex. The nuclear gene KGD2, coding for yeast KE2, was cloned by transformation of E250/U6, a G104 mutant, with a yeast genomic library. Analysis of the KGD2 sequence revealed an open reading frame encoding a protein with a molecular weight of 52,375 and 42% identities to the KE2 component of Escherichia coli alpha-ketoglutarate dehydrogenase complex. Disruption of the chromosomal copy of KGD2 in a respiratory-competent haploid yeast strain elicited a growth phenotype similar to that of G104 mutants and abolished the ability to mitochondria to catalyze the reduction of NAD+ by alpha-ketoglutarate. The expression of KGD2 was transcriptionally regulated by glucose. Northern (RNA) analysis of poly(A)+ RNA indicated the existence of two KGD2 transcripts differing in length by 150 nucleotides. The concentrations of both RNAs were at least 10 times lower in glucose (repressed)- than in galactose (derepressed)-grown cells. Different 5'-flanking regions of KGD2 were fused to the lacZ gene of E. coli in episomal plasmids, and the resultant constructs were tested for expression of beta-galactosidase in wild-type yeast cells and in hap2 and hap3 mutants. Results of the lacZ fusion assays indicated that transcription of KGD2 is activated by the HAP2 and HAP3 proteins. The regulated expression of KGD2 was found to depend on sequences that map to a region 244 to 484 nucleotides upstream of the structural gene. This region contains two short sequence elements that differ by one nucleotide from the consensus core (5'-TN[A/G]TTGGT-3') that has been proposed to be essential for binding of the HAP activation complex. These data together with earlier reports on the regulation of the KGD1 and LPD1 genes for the alpha-ketoglutarate and dihydrolipoyl dehydrogenases indicate that all three enzyme components of the complex are catabolite repressed and subject to positive regulation by the HAP2 and HAP3 proteins.



Sign in / Sign up

Export Citation Format

Share Document