Properties of Ethylmethane Sulfonate-Induced Mutations Affecting Life-History Traits in Caenorhabditis elegans and Inferences About Bivariate Distributions of Mutation Effects

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 143-154 ◽  
Author(s):  
Peter D Keightley ◽  
Esther K Davies ◽  
Andrew D Peters ◽  
Ruth G Shaw

Abstract The homozygous effects of ethylmethane sulfonate (EMS)-induced mutations in Caenorhabditis elegans are compared across life-history traits. Mutagenesis has a greater effect on early than late reproductive output, since EMS-induced mutations tend to cause delayed reproduction. Mutagenesis changes the mean and variance of longevity much less than reproductive output traits. Mutations that increase total or early productivity are not detected, but the net effect of mutations is to increase and decrease late productivity to approximately equal extents. Although most mutations decrease longevity, a mutant line with increased longevity was found. A flattening of mortality curves with age is noted, particularly in EMS lines. We infer that less than one-tenth of mutations that have fitness effects in natural conditions are detected in the laboratory, and such mutations have moderately large effects (~20% of the mean). Mutational correlations for life-history traits are strong and positive. Correlations between early or late productivity and longevity are of similar magnitude. We develop a maximum-likelihood procedure to infer bivariate distributions of mutation effects. We show that strong mutation-induced genetic correlations do not necessarily imply strong directional correlations between mutational effects, since correlation is also generated by lines carrying different numbers of mutations.

Heredity ◽  
2007 ◽  
Vol 98 (4) ◽  
pp. 206-213 ◽  
Author(s):  
E W Gutteling ◽  
A Doroszuk ◽  
J A G Riksen ◽  
Z Prokop ◽  
J Reszka ◽  
...  

2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


Author(s):  
Gaotian Zhang ◽  
Jake D Mostad ◽  
Erik C Andersen

Abstract Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g. a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. Additionally, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Morgan Dutilleul ◽  
Jean-Marc Bonzom ◽  
Catherine Lecomte ◽  
Benoit Goussen ◽  
Fabrice Daian ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Larissa L Vassilieva ◽  
Michael Lynch

Abstract Spontaneous mutations were accumulated in 100 replicate lines of Caenorhabditis elegans over a period of ∼50 generations. Periodic assays of these lines and comparison to a frozen control suggest that the deleterious mutation rate for typical life-history characters in this species is at least 0.05 per diploid genome per generation, with the average mutational effect on the order of 14% or less in the homozygous state and the average mutational heritability ∼0.0034. While the average mutation rate per character and the average mutational heritability for this species are somewhat lower than previous estimates for Drosophila, these differences can be reconciled to a large extent when the biological differences between these species are taken into consideration.


Genetics ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 465-474 ◽  
Author(s):  
T E Johnson ◽  
E W Hutchinson

Abstract We have examined crosses between wild-type strains of Caenorhabditis elegans for heterosis effects on life span and other life history traits. Hermaphrodites of all wild strains had similar life expectancies but males of two strains had shorter life spans than hermaphrodites while males of two other strains lived longer than hermaphrodites. F1 hermaphrodite progeny showed no heterosis while some heterosis for longer life span was detected in F1 males. F1 hybrids of crosses between two widely studied wild-type strains, N2 (var. Bristol) and Berg BO (var. Bergerac), were examined for rate of development, hermaphrodite fertility, and behavior; there was no heterosis for these life history traits. Both controlled variation of temperature and uncontrolled environmental variation affected the length of life of all genotypes. Significant G x E effects on life span were observed in comparisons of N2 and Berg BO hermaphrodites, or N2 hermaphrodites and males, or N2 and a Ts mutant strain (DH26). Nevertheless, within an experiment, environmental variation was minimal and life spans were quite replicable.


Sign in / Sign up

Export Citation Format

Share Document