scholarly journals Correct Regulation of the Septation Initiation Network in Schizosaccharomyces pombe Requires the Activities of par1 and par2

Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1413-1429 ◽  
Author(s):  
Wei Jiang ◽  
Richard L Hallberg

Abstract In Schizosaccharomyces pombe, the initiation of cytokinesis is regulated by a septation initiation network (SIN). We previously reported that deletion of par1 and par2, two S. pombe genes encoding B′ regulatory subunits of protein phosphatase 2A, causes a multiseptation phenotype, very similar to that seen in hyperactive SIN mutants. In this study, we examined the genetic interactions between par deletions and mutations in the genes encoding components of SIN and found that deletion of par1 and par2 suppressed the morphological and viability defects caused by overproduction of Byr4p and rescued a loss-of-function allele of spg1. However, par deletions could not suppress any mutations in genes downstream of spg1 in the SIN pathway. We showed further that, in suppressing the lethality of a spg1 loss-of-function allele, the correct localization of Cdc7p to the spindle pole body (SPB), which is normally lost in spg1 mutant cells, was restored. The fact that par mutant cells themselves exhibited a symmetric localization of Cdc7p to SPBs indicated a hyperactivity of SIN in such cells. On the basis of our epistasis analyses and cytological studies, we concluded that par genes normally negatively regulate SIN at or upstream of cdc7, ensuring that multiple rounds of septation do not occur.

1996 ◽  
Vol 317 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Stanislaw ZOLNIEROWICZ ◽  
Christine VAN HOOF ◽  
Nataša ANDJELKOVIĆ ◽  
Peter CRON ◽  
Ilse STEVENS ◽  
...  

Two protein phosphatase 2A (PP2A) holoenzymes were isolated from rabbit skeletal muscle containing, in addition to the catalytic and PR65 regulatory subunits, proteins of apparent molecular masses of 61 and 56 kDa respectively. Both holoenzymes displayed low basal phosphorylase phosphatase activity, which could be stimulated by protamine to an extent similar to that of previously characterized PP2A holoenzymes. Protein microsequencing of tryptic peptides derived from the 61 kDa protein, termed PR61, yielded 117 residues of amino acid sequence. Molecular cloning by enrichment of specific mRNAs, followed by reverse transcription–PCR and cDNA library screening, revealed that this protein exists in multiple isoforms encoded by at least three genes, one of which gives rise to several splicing variants. Comparisons of these sequences with the available databases identified one more human gene and predicted another based on a rabbit cDNA-derived sequence, thus bringing the number of genes encoding PR61 family members to five. Peptide sequences derived from PR61 corresponded to the deduced amino acid sequences of either α or β isoforms, indicating that the purified PP2A preparation was a mixture of at least two trimers. In contrast, the 56 kDa subunit (termed PR56) seems to correspond to the ϵ isoform of PR61. Several regulatory subunits of PP2A belonging to the PR61 family contain consensus sequences for nuclear localization and might therefore target PP2A to nuclear substrates.


2004 ◽  
Vol 24 (8) ◽  
pp. 3262-3276 ◽  
Author(s):  
Ming-Chin Hou ◽  
David A. Guertin ◽  
Dannel McCollum

ABSTRACT The Sid2p-Mob1p kinase complex is an important component of the septation initiation network (SIN) in the fission yeast Schizosaccharomyces pombe. However, regulation of this complex is still elusive. Here we show that Mob1p is required not only for the subcellular localization of Sid2p but also for its kinase activity. We identified a region at the amino terminus of Sid2p that is required for Mob1p binding and spindle pole body (SPB) localization. Deletion of this region abolishes Mob1p binding and diminishes SPB localization, whereas this region alone is sufficient to associate with Mob1p and SPBs. We further show that a similar region of the N terminus of the Sid2p-related protein kinase Orb6p binds to the Mob1p-related protein Mob2p, suggesting that this may be a conserved mode of interaction for this family of kinases. Phosphorylation of Ser402 and especially Thr578 is important for Sid2p function. Sid2p with a mutation of Thr578 to Ala (T578A) can no longer rescue sid2-250 mutant cells, and this results in reduction of Mob1p binding. Sid2p mutants mimicking phosphorylation at this site (T578D and T578E) can rescue sid2-250 cells, enhance Sid2p kinase activity, and partially rescue growth defects of upstream sin mutants. Interestingly, Sid2p, but not Mob1p, is self-associated. Our experiments suggest that self-associated Sid2p is inactive. This self-association is mediated by a region that overlaps with Mob1p and SPB binding sites. Overexpression of Mob1p is able to disrupt the self-association of Sid2p. Taken together, our results suggest that Sid2p kinase may utilize multiple modes of regulation including self-association, Mob1p binding, and phosphorylation to achieve its full activity at an appropriate time and place in the cell.


2018 ◽  
Vol 29 (17) ◽  
pp. 2084-2097 ◽  
Author(s):  
Hiroshi Qadota ◽  
Yohei Matsunaga ◽  
Pritha Bagchi ◽  
Karen I. Lange ◽  
Karma J. Carrier ◽  
...  

Protein phosphatase 2A (PP2A) is a heterotrimer composed of single catalytic and scaffolding subunits and one of several possible regulatory subunits. We identified PPTR-2, a regulatory subunit of PP2A, as a binding partner for the giant muscle protein UNC-89 (obscurin) in Caenorhabditis elegans. PPTR-2 is required for sarcomere organization when its paralogue, PPTR-1, is deficient. PPTR-2 localizes to the sarcomere at dense bodies and M-lines, colocalizing with UNC-89 at M-lines. PP2A components in C. elegans include one catalytic subunit LET-92, one scaffolding subunit (PAA-1), and five regulatory subunits (SUR-6, PPTR-1, PPTR-2, RSA-1, and CASH-1). In adult muscle, loss of function in any of these subunits results in sarcomere disorganization. rsa-1 mutants show an interesting phenotype: one of the two myosin heavy chains, MHC A, localizes as closely spaced double lines rather than single lines. This “double line” phenotype is found in rare missense mutants of the head domain of MHC B myosin, such as unc-54(s74). Analysis of phosphoproteins in the unc-54(s74) mutant revealed two additional phosphoserines in the nonhelical tailpiece of MHC A. Antibodies localize PPTR-1, PAA-1, and SUR-6 to I-bands and RSA-1 to M-lines and I-bands. Therefore, PP2A localizes to sarcomeres and functions in the assembly or maintenance of sarcomeres.


Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1025-1038 ◽  
Author(s):  
Wei Jiang ◽  
Richard L Hallberg

Abstract Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases found in eukaryotic cells. We cloned two genes, par1+ and par2+, encoding distinct B′ subunits of PP2A in fission yeast. They share 52% identity at the amino acid sequence level. Neither gene is essential but together they are required for normal septum positioning and cytokinesis, for growth at both high and low temperature, and for growth under a number of stressful conditions. Immunofluorescence microscopy revealed that Par2p has a cell-cycle-related localization pattern, being localized at cell ends during interphase and forming a medial ring in cells that are undergoing septation and cytokinesis. Our analyses also indicate that Par1p is more abundant than Par2p in the cell. Cross-organism studies showed that both par1+ and par2+ could complement the rts1Δ allele in Saccharomyces cerevisiae, albeit to different extents, in spite of the fact that neither contains a serine/threonine-rich N-terminal domain like that found in the S. cerevisiae homolog Rts1p. Thus, while Schizosaccharomyces pombe is more similar to higher eukaryotes with respect to its complement of B′-encoding genes, the function of those proteins is conserved relative to that of Rts1p.


2014 ◽  
Vol 25 (15) ◽  
pp. 2250-2259 ◽  
Author(s):  
Nicole Rachfall ◽  
Alyssa E. Johnson ◽  
Sapna Mehta ◽  
Jun-Song Chen ◽  
Kathleen L. Gould

In Schizosaccharomyces pombe, late mitotic events are coordinated with cytokinesis by the septation initiation network (SIN), an essential spindle pole body (SPB)–associated kinase cascade, which controls the formation, maintenance, and constriction of the cytokinetic ring. It is not fully understood how SIN initiation is temporally regulated, but it depends on the activation of the GTPase Spg1, which is inhibited during interphase by the essential bipartite GTPase-activating protein Byr4-Cdc16. Cells are particularly sensitive to the modulation of Byr4, which undergoes cell cycle–dependent phosphorylation presumed to regulate its function. Polo-like kinase, which promotes SIN activation, is partially responsible for Byr4 phosphorylation. Here we show that Byr4 is also controlled by cyclin-dependent kinase (Cdk1)–mediated phosphorylation. A Cdk1 nonphosphorylatable Byr4 phosphomutant displays severe cell division defects, including the formation of elongated, multinucleate cells, failure to maintain the cytokinetic ring, and compromised SPB association of the SIN kinase Cdc7. Our analyses show that Cdk1-mediated phosphoregulation of Byr4 facilitates complete removal of Byr4 from metaphase SPBs in concert with Plo1, revealing an unexpected role for Cdk1 in promoting cytokinesis through activation of the SIN pathway.


2001 ◽  
Vol 353 (3) ◽  
pp. 417-439 ◽  
Author(s):  
Veerle JANSSENS ◽  
Jozef GORIS

Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon.


Sign in / Sign up

Export Citation Format

Share Document