Differential Gene Silencing by trans-heterochromatin in Drosophila melanogaster

Genetics ◽  
2002 ◽  
Vol 160 (1) ◽  
pp. 257-269
Author(s):  
Amy K Csink ◽  
Alexander Bounoutas ◽  
Michelle L Griffith ◽  
Joy F Sabl ◽  
Brian T Sage

Abstract The brownDominant (bwD) allele contains a large insertion of heterochromatin leading to the trans-inactivation of the wild-type allele in bwD/bw+ heterozygous flies. This silencing is correlated with the localization of bw+ to a region of the interphase nucleus containing centric heterochromatin. We have used a series of transgene constructs inserted in the vicinity of the bw locus to demarcate both the extent of bwD influence along the chromosome and the relative sensitivities of various genes. Examples of regulatory regions that are highly sensitive, moderately sensitive, and insensitive were found. Additionally, by using the same transgene at increasing distances from the bwD insertion site in trans we were able to determine the range of influence of the heterochromatic neighborhood in terms of chromosomal distance. When the transgene was farther away from bw, there was, indeed, a tendency for it to be less trans-inactivated. However, insertion site also influenced silencing: a gene 86 kb away was trans-inactivated, while the same transgene 45 kb away was not. Thus location, distance, and gene-specific differences all influence susceptibility to trans-silencing near a heterochromatic neighborhood. These results have important implications for the ability of nuclear positioning to influence the expression of large blocks of a chromosome.

Genetics ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 125-138 ◽  
Author(s):  
T Hazelrigg ◽  
S Petersen

Abstract The white gene in the AR4-24 P[white,rosy] insertion on chromosome 2 has a novel expression pattern, in which it is repressed in the dorsal half of the eye. X-ray mutagenesis led to the isolation of six revertants mapping to chromosome 2, which are wild type in a zeste+ background, and three extreme derivatives, in which white gene expression is repressed in ventral regions of the eye as well. By Southern blot analyses the breakpoints of five of the revertants and one of the extreme derivatives were mapped in the flanking DNA bordering each side of the AR4-24 insertion. The revertants show some dorsal repression of white in the presence of z1, and by this criterion each is only a partial revertant. The extreme derivatives act not only in cis, but also in trans to repress expression of AR4-24 and its various derivatives. We provide evidence that these trans effects are proximity-dependent effects, possibly mediated by pairing of gene copies, as they do not extend to copies of the white gene located elsewhere in the genome. We show that one extreme derivative, E1, is a small deletion spanning the insertion site at the 5' end of the white gene, and propose that the distance between a negative regulatory element in the 5' flanking DNA and the white promoter influences the degree of the repression.


Microbiology ◽  
2009 ◽  
Vol 155 (6) ◽  
pp. 1890-1900 ◽  
Author(s):  
Lisha Ding ◽  
Yao Wang ◽  
Yangbo Hu ◽  
Steve Atkinson ◽  
Paul Williams ◽  
...  

We describe here the functional characterization of the flgM gene in Yersinia pseudotuberculosis. Direct interaction of FlgM with the alternative sigma factor σ 28 (FliA) was first confirmed. A conserved region in the C-terminus of FlgM was found which included the σ 28 binding domain. By site-directed mutagenesis, bacterial two-hybrid analysis and Western blotting, the primary FlgM binding sites with σ 28 were shown to be Ile85, Ala86 and Leu89. A role for FlgM in swimming motility was demonstrated by inactivation of flgM and subsequent complementation in trans. Transcriptional fusion analyses showed differential gene expression of flhDC, fliA, flgM and fliC in the fliA and flgM mutants compared with the wild-type. flhDC expression was not influenced by σ 28 or FlgM while fliA expression was abolished in the fliA mutant and considerably reduced in the flgM mutant when compared to the wild-type, indicating that both FliA and FlgM can activate fliA transcription. Conversely, flgM transcription was higher in the fliA mutant when compared to the wild-type, suggesting that flgM transcription was repressed by σ 28. Interestingly, fliC expression was markedly increased in the flgM mutant, suggesting a negative regulatory role for FlgM in fliC expression. The transcription of other σ-dependent genes (cheW, flgD, flaA, csrA and fliZ) was also examined in fliA and flgM mutant backgrounds and this revealed that other σ-factors apart from σ 28 may be involved in flagellar biogenesis in Y. pseudotuberculosis. Taking together the motility phenotypes and effects of flgM mutation on the regulation of these key motility genes, we propose that the mechanisms regulating flagellar biogenesis in Y. pseudotuberculosis may differ from those described for other bacteria.


Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1061-1069
Author(s):  
X B Peng ◽  
S M Mount

Abstract The white-apricot (wa) allele differs from the wild-type white gene by the presence of the retrovirus-like transposable element copia within the transcription unit. Most RNAs derived from wa have 3' termini within this insertion, and only small amounts of structurally normal RNA are produced. The activity of wa is reduced in trans by a semidominant mutation in the gene Enhancer-of-white-apricot (E(wa). Flies that are wa and heterozygous for the enhancer have eyes which are much lighter than the orange-yellow of wa alone while E(wa) homozygotes have white eyes. This semidominant effect on pigmentation is correlated with a corresponding decrease in white RNA having wild type structure, and flies homozygous for E(wa) have increased levels of aberrant RNAs. Three reverant alleles of E(wa) generated by reversion of the dominant enhancer phenotype with gamma radiation are noncomplementing recessive lethals, with death occurring during the larval stage. The effects on wa eye pigmentation of varying doses of the original E(wa) allele, the wild type allele, and the revertant alleles suggest that the original E(wa) allele produces a product that interferes with the activity of the wild type gene and that the revertants are null alleles. We propose that the E(wa) gene product influences the activity of the downstream copia long terminal repeat in 3' end formation.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 300
Author(s):  
Muhammad Miftahussurur ◽  
Dalla Doohan ◽  
Ari Fahrial Syam ◽  
Iswan Abbas Nusi ◽  
Phawinee Subsomwong ◽  
...  

CYP2C19 polymorphisms are important factors for proton pump inhibitor-based therapy. We examined the CYP2C19 genotypes and analyzed the distribution among ethnicities and clinical outcomes in Indonesia. We employed the polymerase chain reaction-restriction fragment length polymorphism method to determine the CYP2C19 genotypes and evaluated inflammation severity with the updated Sydney system. For CYP2C19*2, 46.4% were the homozygous wild-type allele, 14.5% were the homozygous mutated allele, and 39.2% were the heterozygous allele. For CYP2C19*3, 88.6% were the homozygous wild-type allele, 2.4% were the homozygous mutated allele, and 9.0% were the heterozygous allele. Overall, the prevalence of rapid, intermediate, and poor metabolizers in Indonesia was 38.5, 41.6, and 19.9%, respectively. In the poor metabolizer group, the frequency of allele *2 (78.8%) was higher than the frequency of allele *3 (21.2%). The Papuan had a significantly higher likelihood of possessing poor metabolizers than the Balinese (OR 11.0; P = 0.002). The prevalence of poor metabolizers was lower compared with the rapid and intermediate metabolizers among patients with gastritis and gastroesophageal reflux disease. Intermediate metabolizers had the highest prevalence, followed by rapid metabolizers and poor metabolizers. Dosage adjustment should therefore be considered when administering proton pump inhibitor-based therapy in Indonesia.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1665-1672 ◽  
Author(s):  
Ross B Hodgetts ◽  
Sandra L O'Keefe

Abstract We report here the isolation of a new P-element-induced allele of the vestigial locus vg2a33, the molecular characterization of which allows us to propose a unifying explanation of the phenotypes of the large number of vestigial P-element alleles that now exists. The first P-element allele of vestigial to be isolated was vg21, which results in a very weak mutant wing phenotype that is suppressed in the P cytotype. By destabilizing vg2a33 in a dysgenic cross, we isolated the vg2a33 allele, which exhibits a moderate mutant wing phenotype and is not suppressed by the P cytotype. The new allele is characterized by a 46-bp deletion that removes the 3′-proximal copy of the 11-bp internal repeat from the P element of vg21. To understand how this subtle difference between the two alleles leads to a rather pronounced difference in their phenotypes, we mapped both the vg and P-element transcription units present in wild type and mutants. Using both 5′-RACE and S1 protection, we found that P-element transcription is initiated 19 bp farther upstream than previously thought. Using primer extension, the start of vg transcription was determined to lie 435 bp upstream of the longest cDNA recovered to date and upstream of the P-element insertion site. Our discovery that the P element is situated within the first vg exon has prompted a reassessment of the large body of genetic data on a series of alleles derived from vg21. Our current hypothesis to explain the degree of variation in the mutant phenotypes and their response to the P repressor invokes a critical RNA secondary structure in the vg transcript, the formation of which is hindered by a readthrough transcript initiated at the P-element promoter.


Genetics ◽  
1990 ◽  
Vol 126 (1) ◽  
pp. 167-176
Author(s):  
D Gubb ◽  
M Ashburner ◽  
J Roote ◽  
T Davis

Abstract The zeste mutation of Drosophila melanogaster suppresses the expression of white genes in the eye. This suppression is normally dependent on there being two copies of w+ located close to each other in the genome--they may either be in cis (as in a tandem duplication of w+) or in trans, i.e. on homologous chromosomes. Duplicated w+ genes carried by a giant transposing element, TE146(Z), are suppressed by z whether they are in direct (tandem) or inverted order. The tandem form of the TE is very sensitive to a rearrangement on the homologous chromosome--many rearrangements with breakpoints "opposite" the TE's insertion site prevent the interaction between the white genes on a z background. These aberrations act as dominant suppressors of zeste that are specific to the tandemly duplicated form of TE146(Z). The inverted form of the TE146(Z) presumably pairs as a hairpin loop; this is more stable than the tandem form by the criterion that its zeste phenotype is unaffected by any of the aberrations. This effect of rearrangements has been used as the basis for a screen, gamma-ray induced aberrations with at least one breakpoint opposite the TE site were recovered by their suppression of the zeste phenotype.


Author(s):  
Biao Deng ◽  
Xuan Wang ◽  
Xing Long ◽  
Ren Fang ◽  
Shuangyun Zhou ◽  
...  

AbstractGibberellin (GA), auxin (IAA) and brassinosteroid (BR) are indispensable in the process of plant growth and development. Currently, research on the regulatory mechanism of phytohormones in banana dwarfism is mainly focused on GA, and few studies are focused on IAA and BR. In this study, we measured the contents of endogenous GA, IAA and BR and compared the transcriptomes of wild-type Williams banana and its dwarf mutant across five successive growth periods. We investigated the relationship between hormones and banana dwarfism and explored differential gene expression through transcriptome analysis, thus revealing the possible metabolic regulatory mechanism. We inferred a complex regulatory network of banana dwarfing. In terms of endogenous hormone levels, GA and IAA had significant effects on banana dwarfing, while BR had little effect. The key gene in GA biosynthesis of is GA2ox, and the key genes in IAA biosynthesis are TDC and YUCCA. The differential expression of these genes might be the main factor affecting hormone levels and plant height. In terms of hormone signal transduction, DELLA and AUX/IAA repressor proteins were the core regulators of GA and IAA, respectively. They inhibited the process of signal transduction and had feedback regulation on hormone levels. Finally, the transporter protein PIN, AUX1/LAX protein family and ABCB subfamily played supplementary roles in the transport of IAA. These results provide new insights into GA and IAA regulation of banana growth and a reliable foundation for the improvement of dwarf varieties.


1999 ◽  
Vol 380 (6) ◽  
Author(s):  
S.L. Nutt ◽  
M. Busslinger

AbstractIt is generally assumed that most mammalian genes are transcribed from both alleles. Hence, the diploid state of the genome offers the advantage that a loss-of-function mutation in one allele can be compensated for by the remaining wild-type allele of the same gene. Indeed, the vast majority of human disease syndromes and engineered mutations in the mouse genome are recessive, indicating that recessiveness is the ‘default’ state. However, a minority of genes are semi-dominant, as heterozygous loss-of-function mutation in these genes leads to phenotypic abnormalities. This condition, known as haploinsufficiency, has been described for five of the nine mammalian


2015 ◽  
Vol 59 (3) ◽  
pp. 1818-1821 ◽  
Author(s):  
Luicer A. Ingasia ◽  
Hoseah M. Akala ◽  
Mabel O. Imbuga ◽  
Benjamin H. Opot ◽  
Fredrick L. Eyase ◽  
...  

ABSTRACTThe prevalence of a genetic polymorphism(s) at codon 268 in the cytochromebgene, which is associated with failure of atovaquone-proguanil treatment, was analyzed in 227Plasmodium falciparumparasites from western Kenya. The prevalence of the wild-type allele was 63%, and that of the Y268S (denoting a Y-to-S change at position 268) mutant allele was 2%. There were no pure Y268C or Y268N mutant alleles, only mixtures of a mutant allele(s) with the wild type. There was a correlation between parasite 50% inhibitory concentration (IC50) and parasite genetic polymorphism; mutant alleles had higher IC50s than the wild type.


1967 ◽  
Vol 9 (2) ◽  
pp. 159-177 ◽  
Author(s):  
A. Kruszewska ◽  
W. Gajewski

Mutants of the Y locus differed appreciably in their basic conversion frequencies (frequencies of conversion in one-point crosses) to wild type. The differences in the basic conversion frequencies in the opposite direction, i.e. from corresponding wild-type allele to mutant, were in general not pronounced. For some alleles frequencies of conversion in both directions were similar, but for the others they differed markedly. No evident correlation between the position of mutants on the map and their basic conversion frequencies was observed.In two-point crosses in repulsion, the great majority of recombinant octads were of conversion type. In these crosses symmetry or asymmetry of conversion depended mainly on similarity or differences in basic conversion frequencies of mutants crossed. In crosses between mutants from different clusters the recombination frequencies were near to the sums of their basic conversion frequencies. Such ‘mutant specificity’ makes it impossible to establish the linear order of mutants on the basis of recombination frequencies in two-point crosses.The results of two-point crosses in repulsion between mutants within clusters pointed to the influence of one allele on the frequency of conversion of another one. This ‘marker effect’ was also evident in some three-point crosses.The frequencies of simultaneous conversions in two-point crosses in coupling did not show negative correlation with the distances between the mutants involved.It seems that many of the data presented here are most easily explained by recently developed hybrid DNA models.


Sign in / Sign up

Export Citation Format

Share Document