scholarly journals Increased Genome Instability and Telomere Length in the elg1-Deficient Saccharomyces cerevisiae Mutant Are Regulated by S-Phase Checkpoints

2004 ◽  
Vol 3 (6) ◽  
pp. 1557-1566 ◽  
Author(s):  
Soma Banerjee ◽  
Kyungjae Myung

ABSTRACT Gross chromosomal rearrangements (GCRs) are frequently observed in cancer cells. Abnormalities in different DNA metabolism including DNA replication, cell cycle checkpoints, chromatin remodeling, telomere maintenance, and DNA recombination and repair cause GCRs in Saccharomyces cerevisiae. Recently, we used genome-wide screening to identify several genes the deletion of which increases GCRs in S. cerevisiae. Elg1, which was discovered during this screening, functions in DNA replication by participating in an alternative replication factor complex. Here we further characterize the GCR suppression mechanisms observed in the elg1Δ mutant strain in conjunction with the telomere maintenance role of Elg1. The elg1Δ mutation enhanced spontaneous DNA damage and resulted in GCR formation. However, DNA damage due to inactivation of Elg1 activates the intra-S checkpoints, which suppress further GCR formation. The intra-S checkpoints activated by the elg1Δ mutation also suppress GCR formation in strains defective in the DNA replication checkpoint. Lastly, the elg1Δ mutation increases telomere size independently of other previously known telomere maintenance proteins such as the telomerase inhibitor Pif1 or the telomere size regulator Rif1. The increase in telomere length caused by the elg1Δ mutation was suppressed by a defect in the DNA replication checkpoint, which suggests that DNA replication surveillance by Dpb11-Mec1/Tel1-Dun1 also has an important role in telomere length regulation.

Genetics ◽  
2003 ◽  
Vol 163 (3) ◽  
pp. 973-982 ◽  
Author(s):  
Nisrine Masrouha ◽  
Long Yang ◽  
Sirine Hijal ◽  
Stéphane Larochelle ◽  
Beat Suter

Abstract Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 521-534
Author(s):  
Peter M Garber ◽  
Jasper Rine

Abstract The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Δ mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase δ. Thus the specificity of this checkpoint may be more limited than previously recognized.


Genome ◽  
2002 ◽  
Vol 45 (5) ◽  
pp. 881-889 ◽  
Author(s):  
Colleen M Radcliffe ◽  
Elizabeth A Silva ◽  
Shelagh D Campbell

In multi-cellular organisms, failure to properly regulate cell-cycle progression can result in inappropriate cell death or uncontrolled cell division leading to tumor formation. To guard against such events, conserved regulatory mechanisms called "checkpoints" block progression into mitosis in response to DNA damage and incomplete replication, as well as in response to other signals. Checkpoint mutants in organisms as diverse as yeast and humans are sensitive to various chemical agents that inhibit DNA replication or cause DNA damage. This phenomenon is the primary rationale for chemotherapy, which uses drugs that preferentially target tumor cells with compromised checkpoints. In this study, we demonstrate the use of Drosophila checkpoint mutants as a system for assaying the effects of various DNA-damaging and anti-cancer agents in a developing multicellular organism. Dwee1, grp and mei-41 are genes that encode kinases that function in the DNA replication checkpoint. We tested zygotic mutants of each gene for sensitivity to the DNA replication inhibitor hydroxyurea (HU), methyl methanosulfonate (MMS), ara-C, cisplatin, and the oxygen radical generating compound paraquat. The mutants show distinct differences in their sensitivity to each of the drugs tested, suggesting an underlying complexity in the responses of individual checkpoint genes to genotoxic stress.Key words: hydroxyurea (HU), ara-C, cisplatin, methyl methane sulfonate (MMS), paraquat.


2013 ◽  
Vol 24 (21) ◽  
pp. 3350-3357 ◽  
Author(s):  
Tsvetomira Ivanova ◽  
Isabel Alves-Rodrigues ◽  
Blanca Gómez-Escoda ◽  
Chaitali Dutta ◽  
James A. DeCaprio ◽  
...  

In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)–dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.


Genetics ◽  
2013 ◽  
Vol 194 (2) ◽  
pp. 389-401 ◽  
Author(s):  
Ying-Chou Chen ◽  
Jessica Kenworthy ◽  
Carrie Gabrielse ◽  
Christine Hänni ◽  
Philip Zegerman ◽  
...  

2020 ◽  
Vol 48 (21) ◽  
pp. 12169-12187
Author(s):  
Rose Westhorpe ◽  
Andrea Keszthelyi ◽  
Nicola E Minchell ◽  
David Jones ◽  
Jonathan Baxter

Abstract The highly conserved Tof1/Timeless proteins minimise replication stress and promote normal DNA replication. They are required to mediate the DNA replication checkpoint (DRC), the stable pausing of forks at protein fork blocks, the coupling of DNA helicase and polymerase functions during replication stress (RS) and the preferential resolution of DNA topological stress ahead of the fork. Here we demonstrate that the roles of the Saccharomyces cerevisiae Timeless protein Tof1 in DRC signalling and resolution of DNA topological stress require distinct N and C terminal regions of the protein, whereas the other functions of Tof1 are closely linked to the stable interaction between Tof1 and its constitutive binding partner Csm3/Tipin. By separating the role of Tof1 in DRC from fork stabilisation and coupling, we show that Tof1 has distinct activities in checkpoint activation and replisome stability to ensure the viable completion of DNA replication following replication stress.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1523-1532
Author(s):  
Marie-Claude Marsolier ◽  
Pascal Roussel ◽  
Christophe Leroy ◽  
Carl Mann

Abstract RAD53 encodes a conserved protein kinase that acts as a central transducer in the DNA damage and the DNA replication checkpoint pathways in Saccharomyces cerevisiae. To identify new elements of these pathways acting with or downstream of RAD53, we searched for genes whose overexpression suppressed the toxicity of a dominant-lethal form of RAD53 and identified PTC2, which encodes a protein phosphatase of the PP2C family. PTC2 overexpression induces hypersensitivity to genotoxic agents in wild-type cells and is lethal to rad53, mec1, and dun1 mutants with low ribonucleotide reductase activity. Deleting PTC2 specifically suppresses the hydroxyurea hypersensitivity of mec1 mutants and the lethality of mec1Δ. PTC2 is thus implicated in one or several functions related to RAD53, MEC1, and the DNA checkpoint pathways.


2004 ◽  
Vol 279 (51) ◽  
pp. 53353-53364 ◽  
Author(s):  
Hae Yong Yoo ◽  
Anna Shevchenko ◽  
Andrej Shevchenko ◽  
William G. Dunphy

2006 ◽  
Vol 175 (5) ◽  
pp. 729-741 ◽  
Author(s):  
Jorrit M. Enserink ◽  
Marcus B. Smolka ◽  
Huilin Zhou ◽  
Richard D. Kolodner

In response to DNA replication stress in Saccharomyces cerevisiae, the DNA replication checkpoint maintains replication fork stability, prevents precocious chromosome segregation, and causes cells to arrest as large-budded cells. The checkpoint kinases Mec1 and Rad53 act in this checkpoint. Treatment of mec1 or rad53Δ mutants with replication inhibitors results in replication fork collapse and inappropriate partitioning of partially replicated chromosomes, leading to cell death. We describe a previously unappreciated function of various replication stress checkpoint proteins, including Rad53, in the control of cell morphology. Checkpoint mutants have aberrant cell morphology and cell walls, and show defective bud site selection. Rad53 shows genetic interactions with septin ring pathway components, and, along with other checkpoint proteins, controls the timely degradation of Swe1 during replication stress, thereby facilitating proper bud growth. Thus, checkpoint proteins play an important role in coordinating morphogenetic events with DNA replication during replication stress.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1717-1732
Author(s):  
Francisca Lottersberger ◽  
Fabio Rubert ◽  
Veronica Baldo ◽  
Giovanna Lucchini ◽  
Maria Pia Longhese

Abstract Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Δ mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polα-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Δ and bmh1-170 bmh2Δ mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability.


Sign in / Sign up

Export Citation Format

Share Document