scholarly journals A DELETION MAP OF cyc1 MUTANTS AND ITS CORRESPONDENCE TO MUTATIONALLY ALTERED ISO-1-CYTOCHROMES c OF YEAST

Genetics ◽  
1975 ◽  
Vol 81 (1) ◽  
pp. 51-73 ◽  
Author(s):  
Fred Sherman ◽  
Mary Jackson ◽  
Susan W Liebman ◽  
Ann Marie Schweingruber ◽  
John W Stewart

ABSTRACT Mutants arising spontaneously from sporulated cultures of certain strains of yeast, Saccharomyces cerevisiae, contained deletions of the CYC1 gene which controls the primary structure of iso-1-cytochrome c. At least 60 different kinds of deletions were uncovered among the 104 deletions examined and these ranged in length from those encompassing only two adjacent point mutants to those encompassing at least the entire CYC1 gene. X-ray-induced recombination rates of crosses involving these deletions and cyc1 point mutants resulted in the assignment of 211 point mutants to 47 mutational sites and made it possible to unambiguously order 40 of these 47 sites. Except for one mutant, cyc1-15, there was a strict colinear relationship between the deletion map and the positions of 13 sites that were previously determined by amino acid alterations in iso-1-cytochromes c from intragenic revertants.

Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 21-34
Author(s):  
C W Moore ◽  
D M Hampsey ◽  
J F Ernst ◽  
F Sherman

Abstract Recombination rates have been examined in two-point crosses of various defined cyc1 mutations that cause the loss or nonfunction of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. Recombinants arising by three different means were investigated, including X-ray induced mitotic recombination, spontaneous mitotic recombination, and meiotic recombination. Heteroallelic diploid strains were derived by crossing cyc1 mutants containing a series of alterations at or near the same site to cyc1 mutants containing alterations at various distances. Marked disproportionalities between physical distances and recombination frequencies were observed with certain cyc1 mutations, indicating that certain mismatched bases can significantly affect recombination. The marker effects were more pronounced when the two mutational sites of the heteroalleles were within about 20 base pairs, but separated by at least 4 base pairs. Two alleles, cyc1-163 and cyc1-166, which arose by G.C----C.G transversions at nucleotide positions 3 and 194, respectively, gave rise to especially high rates of recombination. Other mutations having different substitutions at the same nucleotide positions were not associated with abnormally high recombination frequencies. We suggest that these marker effects are due to the lack of repair of either G/G or C/C mismatched base pairs, while the other mismatched base pair of the heteroallele undergoes substantial repair. Furthermore, we suggest that diminished recombination frequencies are due to the concomitant repair of both mismatches within the same DNA tract.


1985 ◽  
Vol 5 (8) ◽  
pp. 1839-1846 ◽  
Author(s):  
S B Baim ◽  
D F Pietras ◽  
D C Eustice ◽  
F Sherman

The CYC1-239-O mutation in the yeast Saccharomyces cerevisiae produces a -His-Leu- replacement of the normal -Ala-Gly- sequence at amino acid positions 5 and 6, which lie within a dispensable region of iso-1-cytochrome c; this mutation can accommodate the formation of a hairpin structure at the corresponding site in the mRNA. The amount of the altered protein was diminished to 20% of the wild-type level, whereas the amount of the mRNA remained normal. However, in contrast to the normal CYC1+ mRNA that is associated mainly with four to seven ribosomes, the bulk of the CYC1-239-O mRNA is associated with one to four ribosomes. These results suggest that the stable secondary structure within the translated region of the CYC1 mRNA diminishes translation by inhibiting elongation.


Genetics ◽  
1978 ◽  
Vol 88 (4) ◽  
pp. 689-707 ◽  
Author(s):  
Fred Sherman ◽  
Cynthia Helms

ABSTRACT The CYC7-1 mutation in the yeast Saccharomyces cerevisiae causes the production of approximately 30 times the normal amount of iso-2-cytochrome c. Genetic analysis established that the CYC7-1 mutation is a reciprocal translocation involving the left arm of chromosome V and the right arm of chromosome XVI. The chromosome V arm was broken adjacent to the gene CYC7, which determines the primary structure of iso-2-cytochrome c, and this fragment containing the CYC7 gene was joined to the segment of chromosome XVI. It appears as though the elevation of iso-2-cytochrome c is caused by an abnormal controlling region adjacent to the structural region of the CYC7 gene.


1972 ◽  
Vol 129 (3) ◽  
pp. 561-569 ◽  
Author(s):  
K. G. Bitar ◽  
S. N. Vinogradov ◽  
C. Nolan ◽  
L. J. Weiss ◽  
E. Margoliash

1. The complete amino acid sequence of cytochrome c from the basidiomycete Ustilago sphaerogena was determined from the amino acid compositions and sequences of either tryptic or chymotryptic peptides, and in homology with at least thirty other established sequences of cytochrome c. 2. The primary structure of the molecule bears all of the characteristics of a mammalian-type cytochrome c, showing the typical clustered distribution of hydrophobic and basic residues with a single polypeptide chain of 107 residues. 3. Like all other fungal cytochromes c, it possesses a free N-terminus, and one less residue at the C-terminus than vertebrate cytochromes c. The region of residues 70–80 is strictly conserved, as is histidine at position 18. Position 26 is occupied by an asparagine residue, in contrast to histidine which occurs at this location in most of the known sequences of mammalian-type cytochromes c. 4. In contrast to some other fungal and plant cytochromes c of known primary structures, the Ustilago cytochrome c molecule does not contain trimethyl-lysine. 5. The sequence of Ustilago cytochrome c differs from the sequences of human, horse, chicken, tuna, wheat, and baker's yeast proteins at loci 47, 43, 44, 44 and 38 respectively.


Genetics ◽  
1977 ◽  
Vol 85 (1) ◽  
pp. 1-22
Author(s):  
Carol W Moore ◽  
Fred Sherman

ABSTRACT X-ray-induced mitotic recombination rates and spontaneous meiotic recombination rates have been determined in two-point crosses of various defined cyc1 mutants of the yeast Saccharomyces cerevisiae. All but one of the 17 cyc1 mutants chosen for this study contained either the addition, deletion or substitution of single base-pairs located within a defined segment of the gene that corresponds to the 11 amino acid residues at the amino terminus of iso-1-cytochrome c; approximately half of these mutants had alterations of the AUG initiation codon, some at the same base pair. Up to 66-fold differences in X-ray-induced recombination rates were observed when the same cyc1 mutant was crossed to cyc1 mutants having different alterations in the AUG initiation codon; over a ten-fold difference was observed in series of homologous crosses involving mutants with different changes at the same base-pair. Recombination rates that were associated with specific cyc1 mutants co-segregated with the particular alleles following meiosis, and comparable recombination patterns were also observed for independently isolated, identical mutations. With the mutants used in this study, the frequencies of meiotic recombination did not differ as markedly, suggesting a dissimilar dependence on specific DNA sequences for these two modes of recombination. These disproportionalities of recombination rates suggest that the nature of the mismatched bases influences the recombination process, but not in a way that can be simply interpreted.


1985 ◽  
Vol 5 (8) ◽  
pp. 1839-1846
Author(s):  
S B Baim ◽  
D F Pietras ◽  
D C Eustice ◽  
F Sherman

The CYC1-239-O mutation in the yeast Saccharomyces cerevisiae produces a -His-Leu- replacement of the normal -Ala-Gly- sequence at amino acid positions 5 and 6, which lie within a dispensable region of iso-1-cytochrome c; this mutation can accommodate the formation of a hairpin structure at the corresponding site in the mRNA. The amount of the altered protein was diminished to 20% of the wild-type level, whereas the amount of the mRNA remained normal. However, in contrast to the normal CYC1+ mRNA that is associated mainly with four to seven ribosomes, the bulk of the CYC1-239-O mRNA is associated with one to four ribosomes. These results suggest that the stable secondary structure within the translated region of the CYC1 mRNA diminishes translation by inhibiting elongation.


Genetics ◽  
1978 ◽  
Vol 89 (4) ◽  
pp. 653-665
Author(s):  
Arjun Singh ◽  
Fred Sherman

ABSTRACT Some of the deletions in the yeast Saccharomyces cerevisiae that encompass the CYC1 gene, which determines iso-1-cytochrome c, extend into the OSM1 gene, causing inhibition of growth on hypertonic media, and into the RAD7 gene, causing sensitivity to UV light. Two deletions (cyc1-363 and cyc1-367) encompass only the CYC1 gene, two deletions (cyc1-366 and cyc1-368) encompass the CYC1 and OSM1 genes, three deletions (cyc1-1, cyc1-364 and cyc1-365) encompass the CYC1, OSM1 and RAD7 genes, while none of the deletions extend into the closely linked SUP4 gene.


1992 ◽  
Vol 12 (5) ◽  
pp. 2154-2164 ◽  
Author(s):  
D J DeMarini ◽  
M Winey ◽  
D Ursic ◽  
F Webb ◽  
M R Culbertson

The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.


1973 ◽  
Vol 131 (3) ◽  
pp. 485-498 ◽  
Author(s):  
R. P. Ambler ◽  
Margaret Wynn

The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5.


Sign in / Sign up

Export Citation Format

Share Document