scholarly journals THE EFFECT OF A SELECTED LOCUS ON LINKED NEUTRAL LOCI

Genetics ◽  
1977 ◽  
Vol 85 (4) ◽  
pp. 753-788 ◽  
Author(s):  
Glenys Thomson

ABSTRACT The effects produced on linked neutral loci as a selected locus evolves towards its equilibrium value are considered. Significant effects on the neutral loci arise if the recombination fraction between the neutral and selected loci is smaller than the order of magnitude of the selective differences at the selected locus. The effect on gene frequencies at the neutral loci, that is, the hitchhiking effect, is determined, as well as the linkage disequilibrium generated by this hitchhiking effect. One of the more important findings is that significant disequilibrium can be generated between two neutral loci by the evolution of a linked selected locus. Consideration is given to the problem of determining how the effect of selection operating in natural populations can be detected, the question of the establishment of inversions in populations, and also to the nonequilibrium properties of populations.

Genetics ◽  
1975 ◽  
Vol 81 (4) ◽  
pp. 787-802 ◽  
Author(s):  
Montgomery Slatkin

ABSTRACT A model of gene flow and selection in two linked loci is analyzed. The problems considered are the effects of linkage on the clines in frequencies at the two loci and the role of gene flow in producing linkage disequilibrium between the loci. Also, the possible significance of linkage as a mechanism for permitting a population of "track" spatial changes in the environment is considered. The results are that when the recombination fraction between the loci is of the same order of magnitude as the selection coefficients or smaller, then linkage is important in determining the gene frequencies and a substantial amount of linkage disequilibrium is present in the cline. Depending on the spatial pattern of selection on the two loci, linkage can either decrease or increase a population's response to local selection.


Genetics ◽  
1981 ◽  
Vol 99 (2) ◽  
pp. 337-356
Author(s):  
Marjorie A Asmussen ◽  
Michael T Clegg

ABSTRACT The dynamic behavior of the linkage disequilibrium (D) between a neutral and a selected locus is analyzed for a variety of deterministic selection models. The time-dependent behavior of D is governed by the gene frequency at the selected locus (p) and by the selection (s) and recombination (r) parameters. Thomson (1977) showed numerically that D may increase under certain initial conditions. We give exact conditions for D to increase in time, which require that the selection intensity exceed the recombination fraction (s > r) and that p be near zero or one. We conclude from this result that gene frequency hitchhiking is most likely to be important when a new favorable mutant enters a population. We also show that, for what can be a wide range of gene frequencies, D will decay at a faster rate than the neutral rate. Consequently, the hitchhiking effect may quickly diminish as the selected gene becomes more common.—The method of analysis allows a complete qualitative description of the dynamics of D as a function of s and r. Two major findings concern the range of gene frequencies at the selected locus for which D either increases over time or decays at a faster rate than under neutrality. For all models considered, the region where D increases (i) first enlarges then shrinks as selection intensifies, and (ii) steadily shrinks as r increases. In contrast, the region of accelerated decay constantly enlarges as the selection intensity increases. This region will either shrink or enlarge as r increases, depending upon the form of selection in force.


1986 ◽  
Vol 48 (3) ◽  
pp. 161-166 ◽  
Author(s):  
Catherine Montchamp-Moreau ◽  
Mariano Katz

SummaryWe analyse the progression of linkage disequilibrium produced by random genetic drift in populations subject to cyclical fluctuations in size. Our model is applied to natural populations of Drosophila which show an annual demographic cycle of bottleneck (finite size) and demographic burst (size supposed to be infinite). In these populations, linkage disequilibrium stabilizes in such a way that, at equilibrium, the expected square of the correlation of gene frequencies E(r2) shows a stable cycle from year to year. If two loci are tightly linked, E(r2) barely varies during the annual cycle. Its values remain close to the value expected in a population of the same but constant effective size. If two loci are loosely linked, fluctuations in E(r2) are large. The maximum value, reached at the end of the bottleneck, is 10 to 100 times greater than the value obtained at the end of the burst. Our results show that the interpretation of observed linkage disequilibrium, by means of statistical tests, requires an accurate knowledge of population demography.


Genetics ◽  
1977 ◽  
Vol 85 (3) ◽  
pp. 543-556
Author(s):  
E Zouros ◽  
G B Golding ◽  
Trudy F C MacKay

ABSTRACT When alleles are combined into few detectable classes, linkage correlations are underestimated most of the time. The probability that the linkage correlation will be underestimated is a function of the actual degree of correlation and the evenness of the allelic distribution, but is mainly determined by the distribution of alleles into distinguishable classes. With only two alleles per class this probability will usually be higher than 0.7. Also, the consistency in the sign of the linkage disequilibrium over many populations may escape detection. An increase of sample size by one order of magnitude or more may be required to compensate for the loss in detection power. It follows that the available electrophoretic studies of linkage correlations, although negative in their majority, do not suggest that epistatic interactions and linkage disequilibria are rare in natural populations.


Genetics ◽  
1974 ◽  
Vol 78 (3) ◽  
pp. 921-936
Author(s):  
Charles H Langley ◽  
Yoshiko N Tobari ◽  
Ken-Ichi Kojima

ABSTRACT Two large, stable populations (Texas and Japan) of Drosophila melanogaster were surveyed at 21 allozyme loci on the second and third chromosomes and for chromosomal gene arrangements on those two chromosomes. Over 220 independent gametes were sampled from each population. The types and frequencies of the surveyed genetic variation are similar to those observed previously and suggest only slight differentiation among geographically distant populations. Linkage disequilibrium among linked allozymes loci is only slightly, if at all, detectable with these sample sizes. Linkage disequilibrium between linked inversions and allozymes loci is common especially when located in the same arm. These disequilibria appear to be in the same direction for most comparisons in the two population samples. This result is interpreted as evidence of similar selective environments (ecological and genetic) in the two populations. It is also noted that the direction of these linkage disequilibria appears to be oriented with respect to the gene frequencies at the component loci.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 797-806 ◽  
Author(s):  
James D Fry

Abstract High rates of deleterious mutations could severely reduce the fitness of populations, even endangering their persistence; these effects would be mitigated if mutations synergize each others’ effects. An experiment by Mukai in the 1960s gave evidence that in Drosophila melanogaster, viability-depressing mutations occur at the surprisingly high rate of around one per zygote and that the mutations interact synergistically. A later experiment by Ohnishi seemed to support the high mutation rate, but gave no evidence for synergistic epistasis. Both of these studies, however, were flawed by the lack of suitable controls for assessing viability declines of the mutation-accumulation (MA) lines. By comparing homozygous viability of the MA lines to simultaneously estimated heterozygous viability and using estimates of the dominance of mutations in the experiments, I estimate the viability declines relative to an appropriate control. This approach yields two unexpected conclusions. First, in Ohnishi’s experiment as well as in Mukai’s, MA lines showed faster-than-linear declines in viability, indicative of synergistic epistasis. Second, while Mukai’s estimate of the genomic mutation rate is supported, that from Ohnishi’s experiment is an order of magnitude lower. The different results of the experiments most likely resulted from differences in the starting genotypes; even within Mukai’s experiment, a subset of MA lines, which I argue probably resulted from a contamination event, showed much slower viability declines than did the majority of lines. Because different genotypes may show very different mutational behavior, only studies using many founding genotypes can determine the average rate and distribution of effects of mutations relevant to natural populations.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 457-467 ◽  
Author(s):  
Z W Luo ◽  
S H Tao ◽  
Z-B Zeng

Abstract Three approaches are proposed in this study for detecting or estimating linkage disequilibrium between a polymorphic marker locus and a locus affecting quantitative genetic variation using the sample from random mating populations. It is shown that the disequilibrium over a wide range of circumstances may be detected with a power of 80% by using phenotypic records and marker genotypes of a few hundred individuals. Comparison of ANOVA and regression methods in this article to the transmission disequilibrium test (TDT) shows that, given the genetic variance explained by the trait locus, the power of TDT depends on the trait allele frequency, whereas the power of ANOVA and regression analyses is relatively independent from the allelic frequency. The TDT method is more powerful when the trait allele frequency is low, but much less powerful when it is high. The likelihood analysis provides reliable estimation of the model parameters when the QTL variance is at least 10% of the phenotypic variance and the sample size of a few hundred is used. Potential use of these estimates in mapping the trait locus is also discussed.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 899-909
Author(s):  
Rongling Wu ◽  
Zhao-Bang Zeng

Abstract A new strategy for studying the genome structure and organization of natural populations is proposed on the basis of a combined analysis of linkage and linkage disequilibrium using known polymorphic markers. This strategy exploits a random sample drawn from a panmictic natural population and the open-pollinated progeny of the sample. It is established on the principle of gene transmission from the parental to progeny generation during which the linkage between different markers is broken down due to meiotic recombination. The strategy has power to simultaneously capture the information about the linkage of the markers (as measured by recombination fraction) and the degree of their linkage disequilibrium created at a historic time. Simulation studies indicate that the statistical method implemented by the Fisher-scoring algorithm can provide accurate and precise estimates for the allele frequencies, recombination fractions, and linkage disequilibria between different markers. The strategy has great implications for constructing a dense linkage disequilibrium map that can facilitate the identification and positional cloning of the genes underlying both simple and complex traits.


1983 ◽  
Vol 25 (2) ◽  
pp. 139-145 ◽  
Author(s):  
C. Strobeck ◽  
G. B. Golding

The variance of three-locus linkage disequilibria for an equilibrium infinite alleles model is solved numerically on a computer, using identity coefficients. It is shown that the variance of three-locus linkage disequilibrium created by random drift, although smaller than the variance of two-locus linkage disequilibrium, is of the same order of magnitude. Hence third-order disequilibria are not necessarily good indications of selection. The formula for the variance of linkage disequilibrium is given when there is no recombination between the genes. This model can also be interpreted as intragenic recombination between three sites within a gene.


Genetics ◽  
1980 ◽  
Vol 94 (2) ◽  
pp. 497-517
Author(s):  
Thomas Nagylaki ◽  
Bradley Lucier

ABSTRACT The equilibrium state of a diffusion model for random genetic drift in a cline is analyzed numerically. The monoecious organism occupies an unbounded linear habitat with constant, uniform population density. Migration is homogeneouq symmetric and independent of genotype. A single diallelic locus with a step environment is investigated in the absence of dominance and mutation. The flattening of the expected cline due to random drift is very slight in natural populations. The ratio of the variance of either gene frequency to the product of the expected gene frequencies decreases monotonically to a nonzero constant. The correlation between the gene frequencies at two points decreases monotonically to zero as the separation is increased with the average position fixed; the decrease is asymptotically exponential. The correlation decreases monotonically to a positive constant depending on the separation as the average position increasingly deviates from the center of the cline with the separation fixed. The correlation also decreases monotonically to zero if one of the points is fixed and the other is moved outward in the habitat, the ultimate decrease again being exponential. Some asymptotic formulae are derived analytically.—The loss of an allele favored in an environmental pocket is investigated by simulating a chain of demes exchanging migrants, the other assumptions being the same as above. For most natural populations, provided the allele would be maintained in the population deterministically, this process is too slow to have evolutionary importance.


Sign in / Sign up

Export Citation Format

Share Document