scholarly journals LINKAGE DISEQUILIBRIUM IN NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER

Genetics ◽  
1974 ◽  
Vol 78 (3) ◽  
pp. 921-936
Author(s):  
Charles H Langley ◽  
Yoshiko N Tobari ◽  
Ken-Ichi Kojima

ABSTRACT Two large, stable populations (Texas and Japan) of Drosophila melanogaster were surveyed at 21 allozyme loci on the second and third chromosomes and for chromosomal gene arrangements on those two chromosomes. Over 220 independent gametes were sampled from each population. The types and frequencies of the surveyed genetic variation are similar to those observed previously and suggest only slight differentiation among geographically distant populations. Linkage disequilibrium among linked allozymes loci is only slightly, if at all, detectable with these sample sizes. Linkage disequilibrium between linked inversions and allozymes loci is common especially when located in the same arm. These disequilibria appear to be in the same direction for most comparisons in the two population samples. This result is interpreted as evidence of similar selective environments (ecological and genetic) in the two populations. It is also noted that the direction of these linkage disequilibria appears to be oriented with respect to the gene frequencies at the component loci.

1978 ◽  
Vol 32 (3) ◽  
pp. 215-229 ◽  
Author(s):  
Charles H. Langley ◽  
Diana B. Smith ◽  
F. M. Johnson

SUMMARYLinkage disequilibria between pairs of 8 polymorphic enzyme loci (αGpdh, Mdh, Adh, Est-6, Pgm, Odh, Est-C and Acph) in some 100 natural population samples of Drosophila melanogaster were examined. The estimates of linkage disequilibrium were made from zygotic frequencies. The magnitude of linkage disequilibria are small and similar to those in previous reports. Variation in linkage disequilibrium among related subpopulations was analysed by analysis of variance of the correlation coefficients. Despite the small absolute value of linkage disequilibrium there is a suggestion of a correlation among related subpopulations. The magnitude of linkage disequilibrium was observed to be positively correlated with linkage. Two cage populations were observed to demonstrate large amounts of linkage disequilibrium between closely linked loci in contrast to the situation in natural populations. This is attributable to the finite sizes of these cage populations.


Genetics ◽  
1977 ◽  
Vol 86 (2) ◽  
pp. 447-454
Author(s):  
Charles H Langley ◽  
Kazuko Ito ◽  
Robert A Voelker

ABSTRACT Linkage disequilibrium among ten polymorphic allozyme loci and polymorphic inversions on chromosomes 2 and 3 in a natural population of Drosophila melanogaster was examined early and late in the annual season. Similar to previous studies, little linkage disequilibrium was observed among allozymes. The two significant cases that were observed in the first sample behaved in a contradictory way. One declined much more rapidly than expected due simply to recombination; the other declined slowly as expected. There was little change in allozyme or inversion frequencies during the season.


Genetics ◽  
1979 ◽  
Vol 93 (2) ◽  
pp. 497-523
Author(s):  
M Loukas ◽  
C B Krimbas ◽  
Y Vergini

ABSTRACT Gametic frequencies were obtained in four natural populations of D. subobscura by extracting wild chromosomes and subsequently analyzing them for inversions and allozymes. The genes Lap and Pept-1, both located within the same inversions of chromosome 0, were found in striking nonrandom associations with them of the same kind and degree in all populations studied. On the contrary, the gene Acph, also located within the previously mentioned inversions, was found in linkage disequilibrium with them only in two populations and of opposite directions. This is also the case for the genes Est-9 and Hk, both located within chromosome E inversions. While the gene Est-9 was in strong linkage disequilibrium with the inversions, of the same kind and degree in all populations studied, Hk was found to be in linkage equilibrium. Allele frequencies for the 29 genes studied do not show geographical variation except for the genes Lap, Pept-1 and Est-9, the ones found in linkage disequilibria with the geographically varying gene arrangements. Although mechanical or historical explanations for these equilibria cannot be ruled out, these data cannot be explained satisfactorily by the "middle gene explanation," which states that loci displaying such linkage disequilibria are the ones located near the break points of inversions, while the ones displaying linkage equilibria with them are located in the middle of them. There is no evidence for consistent linkage disequilibria between pairs of loci, except for the closely linked genes of the complex locus, Est-9. This would imply, if it is not a peculiarity of the Est-9 complex, that the linkage disequilibria aye found only between very closely linked loci or that, far less closely linked genes, the associations are too weak to be detected by the usual samples sizes.


Genetics ◽  
1977 ◽  
Vol 86 (1) ◽  
pp. 175-185
Author(s):  
Terumi Mukai ◽  
Robert A Voelker

ABSTRACT The Raleigh, North Carolina, population of Drosophila melanogaster was examined for linkage disequilibrium in 1974, several years after previous analyses in 1968, 1969, and 1970. αglycerol-3-phosphate dehydrogenase-1 (αGpdh-1), malate dehydrogenase-1 (Mdh-1), alcohol dehydrogenase (Adh), and hexokinase-C (Hex-C, tentative name, F. M. Johnson, unpublished; position determined by the present authors to be 2-74.5) were assayed for 617 second chromosomes, and esterase-C (Est-C) and octanol dehydrogenase (Odh) were assayed for 526 third chromosomes. In addition, two polymorphic inversions in the second chromosomes [In(2L)t and In(2R)NS] were examined, and the following findings were obtained: (1) No linkage disequilibrium between isozyme genes was detected. Significant linkage disequilibria were found only between the polymorphic inversions and isozyme genes [In(2L)t vs. Adh, and In(2R)NS vs. Hex-C]. Significant disequilibrium was not detected between In(2L)t and αGpdh-1, which is included in the inversion, but a tendency toward disequilibrium was consistently found from 1968 to 1974. The frequency of two-strand double crossovers within inversion In(2L)t involving a single crossover on each side of αGpdh-1 was estimated to be 0.00022. Thus, the consistent but not significant linkage disequilibrium between the two factors can be explained by recombination after the inversion occurred. (2) Previously existing linkage disequilibrium between Adh and In(2R)NS (the distance is about 30 cM, but the effective recombination value is about 1.75%) was found to have disappeared. (3) No higher-order linkage disequilibrium was detected. (4) Linkage disequilibrium between Odh and Est-C (the distance of which was estimated to be 0.0058 ± 0.002) could not be detected (χ2  df=1 = 0.9).—From the above results, it was concluded that linkage disequilibria among isozyme genes are very rare in D. melanogaster, so that the Franklin-Lewontin model (Franklin and Lewontin 1970) is not applicable to these genes. The linkage disequilibria between some isozyme genes and polymorphic inversions may be explained by founder effect.


Genetics ◽  
1981 ◽  
Vol 99 (1) ◽  
pp. 151-156
Author(s):  
Charles H Langley ◽  
Robert A Voelker ◽  
Andrew J Leigh Brown ◽  
Seido Ohnishi ◽  
Barbara Dickson ◽  
...  

ABSTRACT We have sampled a London population of Drosophila melanogaster for null alleles at twenty-five allozyme loci. The same loci and biochemical techniques were used as in our previous survey of a North Carolina population (Voelker et al. 1980). This second survey is completely concordant with the first. No nulls were detected among the five X-linked loci. The mean frequency of nulls at the twenty autosomal loci was 0.0023. Although there is significant interlocus heterogeneity, the two populations appear to have the same frequencies at each locus. This suggests that null alleles at these allozyme loci are in mutation-selection balance, and we estimate the average heterozygous effect of an allozyme null to be 0.0015. Consideration of allozyme null-allele frequencies, the effects of allozyme null alleles on viability and fertility and the generally greater amount of genetic variability at allozyme loci determined by electrophoresis lead us to doubt the validity of generalizing from allozyme data to the whole genome.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Andrew G Clark ◽  
David J Begun

Abstract Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2′, was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 899-909
Author(s):  
Rongling Wu ◽  
Zhao-Bang Zeng

Abstract A new strategy for studying the genome structure and organization of natural populations is proposed on the basis of a combined analysis of linkage and linkage disequilibrium using known polymorphic markers. This strategy exploits a random sample drawn from a panmictic natural population and the open-pollinated progeny of the sample. It is established on the principle of gene transmission from the parental to progeny generation during which the linkage between different markers is broken down due to meiotic recombination. The strategy has power to simultaneously capture the information about the linkage of the markers (as measured by recombination fraction) and the degree of their linkage disequilibrium created at a historic time. Simulation studies indicate that the statistical method implemented by the Fisher-scoring algorithm can provide accurate and precise estimates for the allele frequencies, recombination fractions, and linkage disequilibria between different markers. The strategy has great implications for constructing a dense linkage disequilibrium map that can facilitate the identification and positional cloning of the genes underlying both simple and complex traits.


1984 ◽  
Vol 43 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Billy W. Geer ◽  
Cathy C. Laurie-Ahlberg

SUMMARYGenetic variation in the modulating effect of dietary sucrose was assessed in Drosophila melanogaster by examining 27 chromosome substitution lines coisogenic for the X and second chromosomes and possessing different third isogenic chromosomes derived from natural populations. An increase in the concentration of sucrose from 0·1% to 5% in modified Sang's medium C significantly altered the activities of 11 of 15 enzyme activities in third instar larvae, indicating that dietary sucrose modulates many, but not all, of the enzymes of D. melanogaster. A high sucrose diet promoted high activities of enzymes associated with lipid and glycogen synthesis and low activities of enzymes of the glycolytic and Krebs cycle pathways, reflecting the physiological requirements of the animal. Analyses of variance revealed significant genetic variation in the degrees to which sucrose modulated several enzyme activities. Analysis of correlations revealed some relationships between enzymes in the genetic effects on the modulation process. These observations suggest that adaptive evolutionary change may depend in part on the selection of enzyme activity modifiers that are distributed throughout the genome.


Genetics ◽  
1988 ◽  
Vol 119 (3) ◽  
pp. 619-629
Author(s):  
C H Langley ◽  
A E Shrimpton ◽  
T Yamazaki ◽  
N Miyashita ◽  
Y Matsuo ◽  
...  

Abstract The restriction maps of 85 alleles of the Amy region of Drosophila melanogaster from natural populations were surveyed. A subset of these were also scored for allozyme phenotype and adult enzyme activity of alpha-amylase. Large insertions were found in 12% of the alleles in a 15-kb region surrounding the two transcriptional units of the duplicated Amy locus. The low frequencies at which each of these large insertions were found are consistent with earlier reports of variation in other loci. Four small deletions were found in the region 5' to the Amy genes. Each was also rare in the population. Restriction site variation provided an estimate of per nucleotide heterozygosity of 0.006. Several statistically significant linkage disequilibria were observed between four polymorphic restriction sites and the allozymes. Adult alpha-amylase activity was correlated with the allozymes and with the polymorphism at one restriction site close to the transcriptional units.


Sign in / Sign up

Export Citation Format

Share Document