scholarly journals AN ANALYSIS OF MALE-RECOMBINATION ELEMENTS IN A NATURAL POPULATION OF DROSOPHILA MELANOGASTER IN SOUTH TEXAS

Genetics ◽  
1978 ◽  
Vol 88 (1) ◽  
pp. 81-91
Author(s):  
Kathleen A Matthews ◽  
Yuichiro Hiraizumi

ABSTRACT Genomes from a group of Drosophila melanogmter collected from a natural population at San Benito, South Texas, in March of 1975 were analyzed for the presence of male-recombination elements. All three autosomes and both sex chromosomes were examined, with emphasis placed on the two major autosomes, the second and third chromosomes. In samples of 16 second and 16 third chromosomes, at least half, but not all, of each were found to carry male-recombination elements. It is suggested, although the data are not conclusive, that some of the fourth, X, and Y chromosomes might also be associated with male-recombination elements.—When a male-recombination element, or elements, was located in the second chromosome, relatively more male recombination was induced in the second than in the third chromosome. This situation was reversed when the element(s) was located in the third chromosome.—Distortion of transmission frequency, one of the characteristics of previously studied second chromosome lines associated with male recombination, was confirmed for these second chromosomes that carried male-recombination elements. Similar, but less pronounced, distortion was observed for the third chromosome lines that carried male-recombination elements.

Genetics ◽  
1977 ◽  
Vol 87 (1) ◽  
pp. 83-93
Author(s):  
Yuichiro Hiraizumi

ABSTRACT The T-007 second chromosome line, which was originally isolated in 1970 from a natural population of Drosophila melanogasterat Harlingen, south Texas, has previously been shown to be associated with several unusual genetic phenomena. In the present study, two characteristics, distorted transmission frequency and male recombination, were analyzed in relation to the progeny production of T-007 heterozygous individuals. The following points were established: (1) Distorted transmission frequency in the T-007 heterozygous male was mainly due to "elimination" of T-007 chromosomes among the progeny, while no such elimination occurred for the normal partner chromosome. (2) Transmission frequency and progeny production of the T-007 heterozygous females were normal, or at least almost normal. (3) The frequency of male recombination increased with an increasing degree of distortion. This was due to an increased number of recombinants produced per male and to a decreased number of progeny receiving the T-007 chromosome.


Genetics ◽  
1981 ◽  
Vol 98 (2) ◽  
pp. 303-316
Author(s):  
Yuichiro Hiraizumi ◽  
Mary V Gerstenberg

ABSTRACT The T-007 second chromosome, which was isolated from a natural population of Drosophila melanogaster in south Texas in 1970, is known to show, when made heterozygous in males with a standard cn bw second chromosome, a transmission frequency (k) of 0.35—much lower than the theoretically expected 0.5. Natural populations of this species in Texas contain second chromosomes that, against the standard cn bw genetic background, are associated with distorted transmission frequencies comparable to that of the T-007 chromosome. In order to explain how such chromosomes can persist in natural populations in nontrivial frequencies, it has been postulated that, although such chromosomes show reduced k values when tested under the genetic background of a laboratory stock such as cn bw, they may show, on the average, k values larger than 0.5 under natural genetic backgrounds. If this were true, the frequency of chromosomes of the T-007 type (T chromosomes) should be higher in male than in female gametes under natural genetic backgrounds. The present study was conducted to examine this possibility. The results clearly showed that the frequency of such chromosomes was much higher among male than among female gametes, and that the transmission frequency of this type of chromosome was higher than 0.5 under natural genetic backgrounds. These results suggest that T chromosomes behave like Segregation Distorter (SD) chromosomes in natural populations of this species in Texas. A possible relationship between T-007 and SD chromosomes is suggested.


2001 ◽  
Vol 78 (1) ◽  
pp. 23-30 ◽  
Author(s):  
MARIKO KONDO ◽  
ERIKO NAGAO ◽  
HIROSHI MITANI ◽  
AKIHIRO SHIMA

In the medaka, Oryzias latipes, sex is determined chromosomally. The sex chromosomes differ from those of mammals in that the X and Y chromosomes are highly homologous. Using backcross panels for linkage analysis, we mapped 21 sequence tagged site (STS) markers on the sex chromosomes (linkage group 1). The genetic map of the sex chromosome was established using male and female meioses. The genetic length of the sex chromosome was shorter in male than in female meioses. The region where male recombination is suppressed is the region close to the sex-determining gene y, while female recombination was suppressed in both the telomeric regions. The restriction in recombination does not occur uniformly on the sex chromosome, as the genetic map distances of the markers are not proportional in male and female recombination. Thus, this observation seems to support the hypothesis that the heterogeneous sex chromosomes were derived from suppression of recombination between autosomal chromosomes. In two of the markers, Yc-2 and Casp6, which were expressed sequence-tagged (EST) sites, polymorphisms of both X and Y chromosomes were detected. The alleles of the X and Y chromosomes were also detected in O. curvinotus, a species related to the medaka. These markers could be used for genotyping the sex chromosomes in the medaka and other species, and could be used in other studies on sex chromosomes.


Genetics ◽  
1979 ◽  
Vol 93 (2) ◽  
pp. 449-459
Author(s):  
Yuichiro Hiraizumi

ABSTRACT A model is proposed to account for the phenomenon of negative correlation between male recombination (θ) and transmission frequency (k) in Drosophila melanogaster. The model assumes that, in some stage or stages of development, the male recombination elements cause a particular event that does not occur in normal males and that this event, in turn, induces with certain probabilities male recombination and/or sperm dysfunction. The regression equations of θ on k predicted by the model were compared with those actually observed. There was generally excellent agreement between them.


Genetics ◽  
1976 ◽  
Vol 84 (2) ◽  
pp. 333-351
Author(s):  
Margaret G Kidwell ◽  
J F Kidwell

ABSTRACT Two-way selection for male recombination over seven intervals of the third chromosome in Drosophila melanogaster was practiced for nine generations followed by relaxed selection for five generations. Significant responses in both directions were observed but these mainly occurred in early generations in the low line and in later generations in the high line. Divergence of male recombination frequencies between the two selection lines was not restricted to any specific region but occurred in every measured interval of the chromosome. However, right-arm intervals showed a more pronounced response than either left-arm intervals or the centromeric region. Correlated responses in sterility and distortion of transmission ratios occurred as a result of selection for male recombination. Cluster distributions of male recombinants suggested a mixture of meiotic and late gonial events but relative map distances more closely resembled those of the salivary chromosome than standard meiotic or mitotic distances. Patterns of male recombination over time in both second and third chromosomes strongly suggested a major effect associated with the presence of third chromosomes from the Harwich strain. Evidence was also found for modifiers with relatively small effects located in other regions of the genome. The overall results are interpreted in terms of a two-component model of hybrid dysgenesis.


Genetics ◽  
1982 ◽  
Vol 101 (3-4) ◽  
pp. 405-416
Author(s):  
Nita N Scobie ◽  
Henry E Schaffer

ABSTRACT In a set of "mutation accumulation lines," of Drosophila melanogaster that had originated from two different wild-caught lethal-carrying second chromosomes (Yamaguchi and Mukai 1974; Mukai and Cockerham 1977; Voelkers, Schaffer and Mukai 1980) a correlation exists between high rates of reverse mutation at two visible loci and the ability to induce male recombination (Scobie and Schaffer 1982). The second and third chromosomes were extracted from the lines demonstrating these phenomena and tested for independent ability to induce male recombination. When the wild chromosome being tested was of male origin, extracted second chromosome lines were found to induce moderate to high levels of male recombination and reduced transmission frequency of the wild chromosome (the k value). The recombinants recovered in these crosses also demonstrated a high level of double-crossover recombination without the recovery of the reciprocal double-recombinant types. In addition, identifiable portions of extracted second chromosomes of male origin have been placed on very similar, marked genetic backgrounds and tested for their ability to induce male recombination. Results of this procedure have identified two regions of the second chromosome that induce male recombination and reduce k values. These results are consistent with the hypothesis that there exist two mutator factors on the second chromosome, each associated with a "mutation accumulation line" with an unstable locus.


Genetics ◽  
1978 ◽  
Vol 90 (2) ◽  
pp. 257-276
Author(s):  
Barton E Slatko

ABSTRACT The T-007 second chromosome line of Drosophila melanogaster, previously shown to contain genetic elements responsible for male recombination induction, appears to affect several parameters of recombination in females. In T-007 heterozygous females, the distribution of recombination (but not the total frequency) is changed from that observed in control females; relative increases are observed in the more proximal regions of the second, third and X chromosomes, while relative decreases are observed more distally. These changes are paralleled by altered coefficient of coincidence values and in an increased nondisjunction frequency of second chromosomes. The distribution of recombination in females is strikingly similar to that observed in males as measured along the second and third chromosomes, and the frequency of nondisjunction of the X and Y chromosomes is increased in T-007 heterozygous males. Based upon these results and responses to the effect of structurally rearranged heterologues (the "interchromosomal effect"), it is suggested that T-007 affects the preconditions for meiotic exchange in females. It is not yet known if elements responsible for these effects are the same elements responsible for the numerous other traits associated with the T-007 second chromosome.


Genetics ◽  
1986 ◽  
Vol 114 (2) ◽  
pp. 525-547
Author(s):  
Lisa D Brooks ◽  
R William Marks

ABSTRACT The amount and form of natural genetic variation for recombination were studied in six lines for which second chromosomes were extracted from a natural population of Drosophila melanogaster. Multiply marked second, Χ and third chromosomes were used to score recombination. Recombination in the second chromosomes varied in both amount and distribution. These second chromosomes caused variation in the amount and distribution of crossing over in the Χ chromosome and also caused variation in the amount, but not the distribution, of crossing over in the third chromosome. The total amount of crossing over on a chromosome varied by 12-14%. One small region varied twofold; other regions varied by 16-38%. Lines with less crossing over on one chromosome generally had less crossing over on other chromosomes, the opposite of the standard interchromosomal effect. These results show that modifiers of recombination can affect more than one chromosome, and that the variation exists for fine-scale response to selection on recombination.


Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 93-104
Author(s):  
P Ripoll ◽  
A Garcia-Bellido

ABSTRACT The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions.


Genetics ◽  
1973 ◽  
Vol 73 (3) ◽  
pp. 439-444
Author(s):  
Yuichiro Hiraizumi ◽  
Barton Slatko ◽  
Charles Langley ◽  
Annegreth Nill

ABSTRACT T-007 strain of Drosophila melanogaster is known to show recombination in males. The present study established the following points: (1) Clustering occurrence of recombinant, unequal recovery of complementary products of recombination, relatively high frequency of recombination around centromeric region, and relatively frequent occurrence of mosaic phenontype flies—all of these seem to indicate that a considerable fraction of male recombination in the T-007 strain is of premeiotic, or somatic origin, although a fraction still could be of meiotic origin; (2) Male recombination occurs in the third as well as in the second chromosomes, and the frequencies of recombinations are comparable between these two chromosome pairs.


Sign in / Sign up

Export Citation Format

Share Document