scholarly journals Evolved Bmp6 enhancer alleles drive spatial shifts in gene expression during tooth development in sticklebacks

Genetics ◽  
2021 ◽  
Author(s):  
Mark D Stepaniak ◽  
Tyler A Square ◽  
Craig T Miller

Abstract Mutations in enhancers have been shown to often underlie natural variation but the evolved differences in enhancer activity can be difficult to identify in vivo. Threespine sticklebacks (Gasterosteus aculeatus) are a robust system for studying enhancer evolution due to abundant natural genetic variation, a diversity of evolved phenotypes between ancestral marine and derived freshwater forms, and the tractability of transgenic techniques. Previous work identified a series of polymorphisms within an intronic enhancer of the Bone morphogenetic protein 6 (Bmp6) gene that are associated with evolved tooth gain, a derived increase in freshwater tooth number that arises late in development. Here we use a bicistronic reporter construct containing a genetic insulator and a pair of reciprocal two-color transgenic reporter lines to compare enhancer activity of marine and freshwater alleles of this enhancer. In older fish the two alleles drive partially overlapping expression in both mesenchyme and epithelium of developing teeth, but the freshwater enhancer drives a reduced mesenchymal domain and a larger epithelial domain relative to the marine enhancer. In younger fish these spatial shifts in enhancer activity are less pronounced. Comparing Bmp6 expression by in situ hybridization in developing teeth of marine and freshwater fish reveals similar evolved spatial shifts in gene expression. Together, these data support a model in which the polymorphisms within this enhancer underlie evolved tooth gain by shifting the spatial expression of Bmp6 during tooth development, and provide a general strategy to identify spatial differences in enhancer activity in vivo.


2021 ◽  
Author(s):  
Mark D Stepaniak ◽  
Tyler A Square ◽  
Craig T Miller

Mutations in enhancers have been shown to often underlie natural variation but the evolved differences between enhancer activity can be difficult to identify in vivo. Threespine sticklebacks (Gasterosteus aculeatus) are a robust system for studying enhancer evolution due to abundant natural genetic variation, a diversity of evolved phenotypes between ancestral marine and derived freshwater forms, and the tractability of transgenic techniques. Previous work identified a series of polymorphisms within an intronic enhancer of the Bone morphogenetic protein 6 (Bmp6) gene that are associated with evolved tooth gain, a derived increase in freshwater tooth number that arises late in development. Here we use a bicistronic reporter construct containing a genetic insulator and a pair of reciprocal two-color transgenic reporter lines to compare enhancer activity of marine and freshwater alleles of this enhancer. In older fish the two alleles drive partially overlapping expression in both mesenchyme and epithelium of developing teeth, but the freshwater enhancer drives a reduced mesenchymal domain and a larger epithelial domain relative to the marine enhancer. In younger fish these spatial shifts in enhancer activity are less pronounced. Comparing Bmp6 expression by in situ hybridization in developing teeth of marine and freshwater fish reveals similar evolved spatial shifts in gene expression. Together, these data support a model in which the polymorphisms within this enhancer underlie evolved tooth gain by shifting the spatial expression of Bmp6 during tooth development, and provide a general strategy to identify spatial differences in enhancer activity in vivo.



2021 ◽  
Author(s):  
Rachel Waymack ◽  
Mario Gad ◽  
Zeba Wunderlich

Transgenic reporters allow the measurement of regulatory DNA activity in vivo and consequently have long been useful tools in the study of enhancers. Despite the utility of transgenic reporters, few studies have investigated the potential effects these reporters have on the expression of other transgenic reporters or endogenous genes. A full understanding of the impacts transgenic reporters have on expression is required for accurate interpretation of transgenic reporter data and characterization of gene regulatory mechanisms. Here, we investigate the impact transgenic reporters have on the expression of other transgenic reporters and endogenous genes. By measuring the expression of Kruppel (Kr) enhancer reporters in live Drosophila embryos that contain either one or two copies of identical reporters, we find reporters have an inhibitory effect on one another's expression. Further, expression of a nearby endogenous gene is decreased in the presence of a Kr enhancer reporter. Through the use of competitor binding site arrays, we present evidence that reporters, and potentially endogenous genes, are competing for transcription factors (TFs). Increasing the number of competitor Bcd binding sites decreases the peak levels and spatial extent of Bcd-regulated enhancer reporters' expression. To understand how small numbers of added TF binding sites could impact gene expression to the extent we observe, we develop a simple thermodynamic model of our system. Our model predicts competition of the measured magnitude specifically if TF binding is restricted to distinct nuclear subregions, underlining the importance of the non-homogenous nature of the nucleus in regulating gene expression.



2021 ◽  
Author(s):  
Jason T. Lambert ◽  
Linda Su-Feher ◽  
Karol Cichewicz ◽  
Tracy L. Warren ◽  
Iva Zdilar ◽  
...  

ABSTRACTCis-regulatory elements such as enhancers play critical regulatory roles in modulating developmental transcription programs and driving cell-type specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted the self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identify putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in normal and pathogenic brain development.



Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 461-470 ◽  
Author(s):  
A.K. Jowett ◽  
S. Vainio ◽  
M.W. Ferguson ◽  
P.T. Sharpe ◽  
I. Thesleff

Duplication of the msh-like homeobox gene of Drosophila may be related to the evolution of the vertebrate head. The murine homologues of this gene, msx 1 and msx 2 are expressed in the developing craniofacial complex including the branchial arches, especially in regions of epithelial-mesenchymal organogenesis including the developing tooth. By performing in vitro recombination experiments using homochronic dental and non-dental epithelial and mesenchymal tissues from E10 to E18 mouse embryos, we have found that the maintenance of homeobox gene expression in the tooth is dependent upon tissue interactions. In homotypic recombinants, dental-type tissue interactions occur, leading to expression of both genes in a manner similar to that seen during in vivo development. msx 1 is expressed exclusively in mesenchyme, both in the dental papilla and follicle. msx 2 is expressed in the dental epithelium and only in the mesenchyme of the dental papilla. In heterotypic recombinants, the dental epithelium is able to induce msx 1 expression in non-dental mesenchyme, this potential being lost at the bell stage. In these recombinants msx 2 was induced by presumptive dental epithelium prior to the bud stage but not thereafter. The expression of msx 1 and msx 2 in dental mesenchyme requires the presence of epithelium until the early bell stage. However, whereas non-dental, oral epithelium is capable of maintaining expression of msx 1 in dental mesenchyme throughout tooth development, induction of msx 2 was temporally restricted suggesting regulation by a specific epithelial-mesenchymal interaction related to the inductive events of tooth formation. msx 1 and msx 2, as putative transcription factors, may play a role in regulating the expression of other genes during tooth formation. We conclude that expression of msx 1 in jaw mesenchyme requires a non-specific epithelial signal, whereas msx 2 expression in either epithelium or mesenchyme requires reciprocal interactions between specialized dental cell populations.



2004 ◽  
Vol 16 (9) ◽  
pp. 244
Author(s):  
R. M. Baleato ◽  
R. J. Aitken ◽  
S. D. Roman

Vitamin A (retinol, or ROL) is also essential for normal spermatogenesis in the rat and mouse. Vitamin A-deficient (VAD) rodents suffer various disorders including blindness and male infertility. The molecular mechanisms leading to infertility in vitamin A deficient rodents have never been fully elucidated. Following prolonged vitamin A withdrawal the only germ cells remaining in the VAD rodent testis are stem cell spermatogonia, type A1 spermatogonia, and a few preleptotene spermatocytes. Supplementing the diet of these animals with retinoic acid (RA) alleviates all symptoms of vitamin A deficiency, with the exception of sight and spermatogenesis. It is not until VAD animals are re-administered ROL through the diet, or RA is injected in repeated high doses directly into the testis, that normal spermatogenic function is restored. Here we report an interaction, in germ cells, between the Bone Morphogenetic Protein (BMP) 4 and retinoid signalling pathways that may help explain the molecular mechanics of vitamin A deficiency. We localised BMP4 gene expression to adult germ cells, in particular spermatogonia, at both the mRNA and protein level. We generated VAD mice and found that in the absence of retinoids in vivo, bmp4 gene expression was significantly upregulated in the testis. We also observed that the expression of bmp4 is downregulated by retinoid treatment in germ cells isolated from vitamin A sufficient mice. Expression of bmp4 mRNA in isolated spermatogonia was more sensitive to ROL rather than RA. Our results may reflect a direct requirement for ROL by germ cells for the resumption of spermatogenesis in VAD animals that involves the regulation of BMP4 expression. Furthermore our observations suggest that retinoid signalling in germ cells is different to that observed in somatic cells, and may provide insights into the role of retinoids in spermatogenesis.



2018 ◽  
Author(s):  
Marlene Dallmayer ◽  
Jing Li ◽  
Shunya Ohmura ◽  
Rebeca Alba-Rubio ◽  
Michaela C. Baldauf ◽  
...  

ABSTRACTEwing sarcoma (EwS) is an aggressive cancer caused by chromosomal translocations generating fusions of theEWSR1gene withETStranscription factors (in 85%FLI1). EWSR1-FLI1 induces gene expression via binding to enhancer-like GGAA-microsatellites, whose activity increases with the number of consecutive GGAA-repeats.Herein, we investigate the role of the secretory neuropeptide CALCB (calcitonin related polypeptide β) in EwS, which signals via the CGRP-(calcitonin gene-related peptide) receptor complex, containing RAMP1 (receptor activity modifying protein 1) as crucial part for receptor specificity. Analysis of 2,678 gene expression microarrays comprising 50 tumor entities and 71 normal tissue types revealed thatCALCBis specifically and highly overexpressed in EwS. Time-course knockdown experiments showed thatCALCBexpression is tightly linked to that ofEWSR1-FLI1. Consistently, gene set enrichment analyses of genes whose expression in primary EwS is correlated to that ofCALCBindicated that it is co-expressed with other EWSR1-FLI1 target genes and associated with signatures involved in stemness and proliferation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) data for EWSR1-FLI1 and histone marks from EwS cells demonstrated that EWSR1-FLI1 binds to a GGAA-microsatellite close toCALCB, which exhibits characteristics of an active enhancer. Reporter assays confirmed the strong EWSR1-FLI1- and length-dependent enhancer activity of this GGAA-microsatellite. Mass-spectrometry analyses of supernatants of EwS cell cultures demonstrated that CALCB is secreted by EwS cells. While short-term RNA interference-mediatedCALCBknockdown had no effect on proliferation and clonogenic growth of EwS cellsin vitro, its long-term knockdown decreased EwS growthin vitroandin vivo. Similarly, knockdown ofRAMP1reduced clonogenic/spheroidal growth and tumorigenicity, and small-molecule inhibitors directed against the CGRP-receptor comprising RAMP1 reduced growth of EwS.Collectively, our findings suggest thatCALCBis a direct EWSR1-FLI1 target and that targeting the CALCB/RAMP1-axis may offer a new therapeutic strategy for inhibition of EwS growth.



2019 ◽  
Author(s):  
William Stanney ◽  
Franck Ladam ◽  
Ian J. Donaldson ◽  
Teagan J. Parsons ◽  
René Maehr ◽  
...  

SUMMARYAnimal embryogenesis is initiated by maternal factors, but zygotic genome activation (ZGA) shifts control to the embryo at early blastula stages. ZGA is thought to be mediated by specialized maternally deposited transcription factors (TFs), but here we demonstrate that NF-Y and TALE – TFs with known later roles in embryogenesis – co-occupy unique genomic elements at zebrafish ZGA. We show that these elements are selectively associated with early-expressed genes involved in transcriptional regulation and possess enhancer activity in vivo. In contrast, we find that elements individually occupied by either NF-Y or TALE are associated with genes acting later in development – such that NF-Y controls a cilia gene expression program while TALE TFs control expression of hox genes. We conclude that NF-Y and TALE have a shared role at ZGA, but separate roles later during development, demonstrating that combinations of known TFs can regulate subsets of key developmental genes at vertebrate ZGA.



2020 ◽  
Author(s):  
Zeyang Shen ◽  
Jenhan Tao ◽  
Gregory J. Fonseca ◽  
Christopher K. Glass

AbstractRegulation of gene expression requires the combinatorial binding of sequence-specific transcription factors (TFs) at promoters and enhancers. Single nucleotide polymorphisms (SNPs) and short insertions and deletions (InDels) can influence gene expression by altering the sequences of TF binding sites. Prior studies also showed that alterations in the spacing between TF binding sites can influence promoter and enhancer activity. However, the relative importance of altered TF spacing has not been systematically analyzed in the context of natural genetic variation. Here, we exploit millions of InDels provided by five diverse strains of mice to globally investigate the effects of altered spacing on TF binding and local histone acetylation in macrophages. We find that spacing alterations resulting from InDels are generally well tolerated in comparison to genetic variants that directly alter TF binding sites. These findings have implications for interpretation of non-coding genetic variation and comparative analysis of regulatory elements across species.



Author(s):  
Kuo An Liao ◽  
Krsna V. Rangarajan ◽  
Xue Bai ◽  
Joan M. Taylor ◽  
Christopher P. Mack

We have previously shown that several components of the RhoA signaling pathway control SMC phenotype by altering SRF-dependent gene expression. Because our genome wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, DSTN, was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the GTEx consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by the MRTF/SRF, Notch/RBPJ, and SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were up-regulated by RhoA and TGF-β signaling and down-regulated by the Notch inhibitor, DAPT. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by PDGF-BB treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression; decreased SMC migration in scratch wound assays; and decreased SMC proliferation as measured by cell number and cyclin E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.



2002 ◽  
Vol 22 (12) ◽  
pp. 4293-4308 ◽  
Author(s):  
Charles K. Kaufman ◽  
Satrajit Sinha ◽  
Diana Bolotin ◽  
Jie Fan ◽  
Elaine Fuchs

ABSTRACT In this report, we explored the mechanisms underlying keratinocyte-specific and differentiation-specific gene expression in the skin. We have identified five keratinocyte-specific, open chromatin regions that exist within the 6 kb of 5′ upstream regulatory sequence known to faithfully recapitulate the strong endogenous keratin 5 (K5) promoter and/or enhancer activity. One of these, DNase I-hypersensitive site (HSs) 4, was unique in that it acted independently to drive abundant and keratinocyte-specific reporter gene activity in culture and in transgenic mice, despite the fact that it was not essential for K5 enhancer activity. We have identified evolutionarily conserved regulatory elements and a number of their associated proteins that bind to this compact and complex enhancer element. The 125-bp 3′ half of this element (referred to as 4.2) is by far the smallest known strong enhancer element possessing keratinocyte-specific activity in vivo. Interestingly, its activity is restricted to a subset of progeny of K5-expressing cells located within the sebaceous gland. The other half of HSs 4 (termed 4.1) possesses activity to suppress sebocyte-specific expression and induce expression in the channel (inner root sheath) cells surrounding the hair shaft. Our findings lead us to a view of keratinocyte gene expression which is determined by multiple regulatory modules, many of which contain AP-2 and/or Sp1/Sp3 binding sites for enhancing expression in skin epithelium, but which also harbor one or more unique sites for the binding of factors which determine specificity. Through mixing and matching of these modules, additional levels of specificity are obtained, indicating that both transcriptional repressors and activators govern the specificity.



Sign in / Sign up

Export Citation Format

Share Document