scholarly journals The chromosome-level draft genome of Dalbergia odorifera

GigaScience ◽  
2020 ◽  
Vol 9 (8) ◽  
Author(s):  
Zhou Hong ◽  
Jiang Li ◽  
Xiaojin Liu ◽  
Jinmin Lian ◽  
Ningnan Zhang ◽  
...  

Abstract Background Dalbergia odorifera T. Chen (Fabaceae) is an International Union for Conservation of Nature red-listed tree. This tree is of high medicinal and commercial value owing to its officinal, insect-proof, durable heartwood. However, there is a lack of genome reference, which has hindered development of studies on the heartwood formation. Findings We presented the first chromosome-scale genome assembly of D. odorifera obtained on the basis of Illumina paired-end sequencing, Pacific Biosciences single-molecule real-time sequencing, 10x Genomics linked reads, and Hi-C technology. We assembled 97.68% of the 653.45 Mb D. odorifera genome with scaffold N50 and contig sizes of 56.16 and 5.92 Mb, respectively. Ten super-scaffolds corresponding to the 10 chromosomes were assembled, with the longest scaffold reaching 79.61 Mb. Repetitive elements account for 54.17% of the genome, and 30,310 protein-coding genes were predicted from the genome, of which ∼92.6% were functionally annotated. The phylogenetic tree showed that D. odorifera diverged from the ancestor of Arabidopsis thaliana and Populus trichocarpa and then separated from Glycine max and Cajanus cajan. Conclusions We sequence and reveal the first chromosome-level de novo genome of D. odorifera. These studies provide valuable genomic resources for the research of heartwood formation in D. odorifera and other timber trees. The high-quality assembled genome can also be used as reference for comparative genomics analysis and future population genetic studies of D. odorifera.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Baohua Chen ◽  
Zhixiong Zhou ◽  
Qiaozhen Ke ◽  
Yidi Wu ◽  
Huaqiang Bai ◽  
...  

Abstract Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an “iconic” marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86 Mb and a contig N50 length of 2.83 Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67 Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea.


2017 ◽  
Vol 5 (28) ◽  
Author(s):  
Su-Yeon Lee ◽  
Ji-eun An ◽  
Sun-Hwa Ryu ◽  
Myungkil Kim

ABSTRACT Polyporus brumalis is able to synthesize several sesquiterpenes during fungal growth. Using a single-molecule real-time sequencing platform, we present the 53-Mb draft genome of P. brumalis, which contains 6,231 protein-coding genes. Gene annotation and isolation support genetic information, which can increase the understanding of sesquiterpene metabolism in P. brumalis.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xuchen Yang ◽  
Minghui Kang ◽  
Yanting Yang ◽  
Haifeng Xiong ◽  
Mingcheng Wang ◽  
...  

AbstractThe deciduous Chinese tupelo (Nyssa sinensis Oliv.) is a popular ornamental tree for the spectacular autumn leaf color. Here, using single-molecule sequencing and chromosome conformation capture data, we report a high-quality, chromosome-level genome assembly of N. sinensis. PacBio long reads were de novo assembled into 647 polished contigs with a total length of 1,001.42 megabases (Mb) and an N50 size of 3.62 Mb, which is in line with genome sizes estimated using flow cytometry and the k-mer analysis. These contigs were further clustered and ordered into 22 pseudo-chromosomes based on Hi-C data, matching the chromosome counts in Nyssa obtained from previous cytological studies. In addition, a total of 664.91 Mb of repetitive elements were identified and a total of 37,884 protein-coding genes were predicted in the genome of N. sinensis. All data were deposited in publicly available repositories, and should be a valuable resource for genomics, evolution, and conservation biology.


2021 ◽  
Author(s):  
Zhi-Jin Liu ◽  
Xiong-Fei Zhang ◽  
Hua-Mei Wen ◽  
Ling Han ◽  
Jiang Zhou

Abstract BackgroundLoaches from the superfamily Cobitoidea (Cypriniformes, Nemacheilidae) are small elongated bottom-dwelling freshwater fishes with several barbels near the mouth, and some species of loach inhabit the underground drainage. The genus Oreonectes with 18 currently recognized loach species represent the three key stages of the evolutionary process (a surface-dwelling lifestyle, facultative cave persistence, and permanent cave dwelling). Some Oreonectes species show typical cave dwelling-related traits, such as partial or complete leucism and regression of the eyes, rendering them as suitable study objects of micro-evolution. Genome information of Oreonectes species is therefore an indispensable research resource of the evolution of cavefishes.ResultWe assembled the genome sequence of O. shuilongensis, a surface-dwelling species, using an integrated approach that combined PacBio single-molecule real-time sequencing and Illumina X-ten paired-end sequencing. The genome assembly contains 803 contigs with N50 values of 5.58 Mb. 25,247 protein-coding genes were predicted, of which 95.65% have been functionally annotated. Meanwhile,we found that dozens of genes related to eye development and melanogenesis were pseudogenised during the evolutionary process in cave environment, providing novel insights into complex phenotypic adaptations of animals in specific environment. ConclusionHere we report the first draft genome assembly of Oreonectes fishes, which is also the first genome reference for Cobitidea fishes. This genome assembly will contribute to the study of the evolution and adaptation of cavefishes within Oreonectes and beyond (Cobitidea) and provid valuable genomic resources for studies on the evolutionary history of the rapid speciation processes of family Nemacheilidae.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhixiong Zhou ◽  
Bo Liu ◽  
Baohua Chen ◽  
Yue Shi ◽  
Fei Pu ◽  
...  

Abstract Takifugu bimaculatus is a native teleost species of the southeast coast of China where it has been cultivated as an important edible fish in the last decade. Genetic breeding programs, which have been recently initiated for improving the aquaculture performance of T. bimaculatus, urgently require a high-quality reference genome to facilitate genome selection and related genetic studies. To address this need, we produced a chromosome-level reference genome of T. bimaculatus using the PacBio single molecule sequencing technique (SMRT) and High-through chromosome conformation capture (Hi-C) technologies. The genome was assembled into 2,193 contigs with a total length of 404.21 Mb and a contig N50 length of 1.31 Mb. After chromosome-level scaffolding, 22 chromosomes with a total length of 371.68 Mb were constructed. Moreover, a total of 21,117 protein-coding genes and 3,471 ncRNAs were annotated in the reference genome. The highly accurate, chromosome-level reference genome of T. bimaculatus provides an essential genome resource for not only the genome-scale selective breeding of T. bimaculatus but also the exploration of the evolutionary basis of the speciation and local adaptation of the Takifugu genus.


2020 ◽  
Author(s):  
Shangang Jia ◽  
Guoliang Wang ◽  
Guiming Liu ◽  
Jiangyong Qu ◽  
Beilun Zhao ◽  
...  

ABSTRACTThe red algae Kappaphycus alvarezii is the most important aquaculture species in Kappaphycus, widely distributed in tropical waters, and it has become the main crop of carrageenan production at present. The mechanisms of adaptation for high temperature, high salinity environments and carbohydrate metabolism may provide an important inspiration for marine algae study. Scientific background knowledge such as genomic data will be also essential to improve disease resistance and production traits of K. alvarezii. 43.28 Gb short paired-end reads and 18.52 Gb single-molecule long reads of K. alvarezii were generated by Illumina HiSeq platform and Pacbio RSII platform respectively. The de novo genome assembly was performed using Falcon_unzip and Canu software, and then improved with Pilon. The final assembled genome (336 Mb) consists of 888 scaffolds with a contig N50 of 849 Kb. Further annotation analyses predicted 21,422 protein-coding genes, with 61.28% functionally annotated. Here we report the draft genome and annotations of K. alvarezii, which are valuable resources for future genomic and genetic studies in Kappaphycus and other algae.


2019 ◽  
Author(s):  
Ryan Bracewell ◽  
Anita Tran ◽  
Kamalakar Chatla ◽  
Doris Bachtrog

ABSTRACTThe Drosophila obscura species group is one of the most studied clades of Drosophila and harbors multiple distinct karyotypes. Here we present a de novo genome assembly and annotation of D. bifasciata, a species which represents an important subgroup for which no high-quality chromosome-level genome assembly currently exists. We combined long-read sequencing (Nanopore) and Hi-C scaffolding to achieve a highly contiguous genome assembly approximately 193Mb in size, with repetitive elements constituting 30.1% of the total length. Drosophila bifasciata harbors four large metacentric chromosomes and the small dot, and our assembly contains each chromosome in a single scaffold, including the highly repetitive pericentromere, which were largely composed of Jockey and Gypsy transposable elements. We annotated a total of 12,821 protein-coding genes and comparisons of synteny with D. athabasca orthologs show that the large metacentric pericentromeric regions of multiple chromosomes are conserved between these species. Importantly, Muller A (X chromosome) was found to be metacentric in D. bifasciata and the pericentromeric region appears homologous to the pericentromeric region of the fused Muller A-AD (XL and XR) of pseudoobscura/affinis subgroup species. Our finding suggests a metacentric ancestral X fused to a telocentric Muller D and created the large neo-X (Muller A-AD) chromosome ∼15 MYA. We also confirm the fusion of Muller C and D in D. bifasciata and show that it likely involved a centromere-centromere fusion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fenghua Tian ◽  
Changtian Li ◽  
Yu Li

Yuanmo [Sarcomyxa edulis (Y.C. Dai, Niemelä & G.F. Qin) T. Saito, Tonouchi & T. Harada] is an important edible and medicinal mushroom endemic to Northeastern China. Here we report the de novo sequencing and assembly of the S. edulis genome using single-molecule real-time sequencing technology. The whole genome was approximately 35.65 Mb, with a G + C content of 48.31%. Genome assembly generated 41 contigs with an N50 length of 1,772,559 bp. The genome comprised 9,364 annotated protein-coding genes, many of which encoded enzymes involved in the modification, biosynthesis, and degradation of glycoconjugates and carbohydrates or enzymes predicted to be involved in the biosynthesis of secondary metabolites such as terpene, type I polyketide, siderophore, and fatty acids, which are responsible for the pharmacodynamic activities of S. edulis. We also identified genes encoding 1,3-β-glucan synthase and endo-1,3(4)-β-glucanase, which are involved in polysaccharide and uridine diphosphate glucose biosynthesis. Phylogenetic and comparative analyses of Basidiomycota fungi based on a single-copy orthologous protein indicated that the Sarcomyxa genus is an independent group that evolved from the Pleurotaceae family. The annotated whole-genome sequence of S. edulis can serve as a reference for investigations of bioactive compounds with medicinal value and the development and commercial production of superior S. edulis varieties.


2021 ◽  
Author(s):  
VISHNU PRASOODANAN P K ◽  
Shruti S. Menon ◽  
Rituja Saxena ◽  
Prashant Waiker ◽  
Vineet K Sharma

Discovery of novel thermophiles has shown promising applications in the field of biotechnology. Due to their thermal stability, they can survive the harsh processes in the industries, which make them important to be characterized and studied. Members of Anoxybacillus are alkaline tolerant thermophiles and have been extensively isolated from manure, dairy-processed plants, and geothermal hot springs. This article reports the assembled data of an aerobic bacterium Anoxybacillus sp. strain MB8, isolated from the Tattapani hot springs in Central India, where the 16S rRNA gene shares an identity of 97% (99% coverage) with Anoxybacillus kamchatkensis strain G10. The de novo assembly and annotation performed on the genome of Anoxybacillus sp. strain MB8 comprises of 2,898,780 bp (in 190 contigs) with a GC content of 41.8% and includes 2,976 protein-coding genes,1 rRNA operon, 73 tRNAs, 1 tm-RNA and 10 CRISPR arrays. The predicted protein-coding genes have been classified into 21 eggNOG categories. The KEGG Automated Annotation Server (KAAS) analysis indicated the presence of assimilatory sulfate reduction pathway, nitrate reducing pathway, and genes for glycoside hydrolases (GHs) and glycoside transferase (GTs). GHs and GTs hold widespread applications, in the baking and food industry for bread manufacturing, and in the paper, detergent and cosmetic industry. Hence, Anoxybacillus sp. strain MB8 holds the potential to be screened and characterized for such commercially relevant enzymes.


2020 ◽  
Vol 12 (7) ◽  
pp. 1074-1079 ◽  
Author(s):  
Ruihao Shu ◽  
Jihong Zhang ◽  
Qian Meng ◽  
Huan Zhang ◽  
Guiling Zhou ◽  
...  

Abstract Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus endemic to the Qinghai-Tibet Plateau. It parasitizes and mummifies the underground ghost moth larvae, then produces a fruiting body. The fungus-insect complex, called Chinese cordyceps or “DongChongXiaCao,” is not only a valuable traditional Chinese medicine, but also a major source of income for numerous Himalayan residents. Here, taking advantage of rapid advances in single-molecule sequencing, we assembled a highly contiguous genome assembly of O. sinensis. The assembly of 23 contigs was ∼110.8 Mb with a N50 length of 18.2 Mb. We used RNA-seq and homologous protein sequences to identify 8,916 protein-coding genes in the IOZ07 assembly. Moreover, 63 secondary metabolite gene clusters were identified in the improved assembly. The improved assembly and genome features described in this study will further inform the evolutionary study and resource utilization of Chinese cordyceps.


Sign in / Sign up

Export Citation Format

Share Document