scholarly journals Genetic demultiplexing of pooled single-cell RNA-sequencing samples in cancer facilitates effective experimental design

GigaScience ◽  
2021 ◽  
Vol 10 (9) ◽  
Author(s):  
Lukas M Weber ◽  
Ariel A Hippen ◽  
Peter F Hickey ◽  
Kristofer C Berrett ◽  
Jason Gertz ◽  
...  

Abstract Background Pooling cells from multiple biological samples prior to library preparation within the same single-cell RNA sequencing experiment provides several advantages, including lower library preparation costs and reduced unwanted technological variation, such as batch effects. Computational demultiplexing tools based on natural genetic variation between individuals provide a simple approach to demultiplex samples, which does not require complex additional experimental procedures. However, to our knowledge these tools have not been evaluated in cancer, where somatic variants, which could differ between cells from the same sample, may obscure the signal in natural genetic variation. Results Here, we performed in silico benchmark evaluations by combining raw sequencing reads from multiple single-cell samples in high-grade serous ovarian cancer, which has a high copy number burden, and lung adenocarcinoma, which has a high tumor mutational burden. Our results confirm that genetic demultiplexing tools can be effectively deployed on cancer tissue using a pooled experimental design, although high proportions of ambient RNA from cell debris reduce performance. Conclusions This strategy provides significant cost savings through pooled library preparation. To facilitate similar analyses at the experimental design phase, we provide freely accessible code and a reproducible Snakemake workflow built around the best-performing tools found in our in silico benchmark evaluations, available at https://github.com/lmweber/snp-dmx-cancer.

2020 ◽  
Author(s):  
Lukas M. Weber ◽  
Ariel A. Hippen ◽  
Peter F. Hickey ◽  
Kristofer C. Berrett ◽  
Jason Gertz ◽  
...  

AbstractPooling cells from multiple biological samples prior to library preparation within the same single-cell RNA sequencing experiment provides several advantages, including lower library preparation costs and reduced unwanted technological variation, such as batch effects. Computational demultiplexing tools based on natural genetic variation between individuals provide a simple approach to demultiplex samples, which does not require complex additional experimental procedures. However, these tools have not been evaluated in cancer, where somatic variants, which could differ between cells from the same sample, may obscure the natural genetic variation. Here, we performed in silico benchmark evaluations by combining sequencing reads from multiple single-cell samples in high-grade serous ovarian cancer, which has a high copy number burden, and lung adenocarcinoma, which has a high tumor mutational burden, confirming that genetic demultiplexing tools can be effectively deployed on cancer tissue using a pooled experimental design. We demonstrate that this strategy provides significant cost savings through pooled library preparation. To facilitate similar analyses at the experimental design phase, we provide freely accessible code and a reproducible Snakemake workflow built around the best-performing tools found in our in silico benchmark evaluations, available at https://github.com/lmweber/snp-dmx-cancer.


2020 ◽  
Vol 38 (11) ◽  
pp. 1356-1356
Author(s):  
Hyun Min Kang ◽  
Meena Subramaniam ◽  
Sasha Targ ◽  
Michelle Nguyen ◽  
Lenka Maliskova ◽  
...  

2017 ◽  
Vol 36 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Hyun Min Kang ◽  
Meena Subramaniam ◽  
Sasha Targ ◽  
Michelle Nguyen ◽  
Lenka Maliskova ◽  
...  

2017 ◽  
Vol 17 (4) ◽  
pp. 233-239 ◽  
Author(s):  
Jeanette Baran-Gale ◽  
Tamir Chandra ◽  
Kristina Kirschner

2016 ◽  
Author(s):  
Damian Wollny ◽  
Sheng Zhao ◽  
Ana Martin-Villalba

Single cell RNA sequencing technology has emerged as a promising tool to uncover previously neglected cellular heterogeneity. Multiple methods and protocols have been developed to apply single cell sequencing to different cell types from various organs. However, library preparation for RNA sequencing remains challenging for cell types with high RNAse content due to rapid degradation of endogenous RNA molecules upon cell lysis. To this end, we developed a protocol based on the SMART-seq2 technology for single cell RNA sequencing of pancreatic acinar cells, the cell type with one of the highest ribonuclease concentration measured to date. This protocol reliably produces high quality libraries from single acinar cells reaching a total of 5x106 reads / cell and ∼ 80% transcript mapping rate with no detectable 3´end bias. Thus, our protocol makes single cell transcriptomics accessible to cell type with very high RNAse content.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Beate Vieth ◽  
Swati Parekh ◽  
Christoph Ziegenhain ◽  
Wolfgang Enard ◽  
Ines Hellmann

Abstract The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a large variety of experimental and computational pipelines for which best practices have not yet been established. Here, we use simulations based on five scRNA-seq library protocols in combination with nine realistic differential expression (DE) setups to systematically evaluate three mapping, four imputation, seven normalisation and four differential expression testing approaches resulting in ~3000 pipelines, allowing us to also assess interactions among pipeline steps. We find that choices of normalisation and library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation determines the ability to detect symmetric expression differences, while normalisation dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the importance of informed choices by showing that a good scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling the sample size.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-325288
Author(s):  
Bernd Heinrich ◽  
E Michael Gertz ◽  
Alejandro A Schäffer ◽  
Amanda Craig ◽  
Benjamin Ruf ◽  
...  

ObjectiveHepatocellular carcinoma (HCC) represents a typical inflammation-associated cancer. Tissue resident innate lymphoid cells (ILCs) have been suggested to control tumour surveillance. Here, we studied how the local cytokine milieu controls ILCs in HCC.DesignWe performed bulk RNA sequencing of HCC tissue as well as flow cytometry and single-cell RNA sequencing of enriched ILCs from non-tumour liver, margin and tumour core derived from 48 patients with HCC. Simultaneous measurement of protein and RNA expression at the single-cell level (AbSeq) identified precise signatures of ILC subgroups. In vitro culturing of ILCs was used to validate findings from in silico analysis. Analysis of RNA-sequencing data from large HCC cohorts allowed stratification and survival analysis based on transcriptomic signatures.ResultsRNA sequencing of tumour, non-tumour and margin identified tumour-dependent gradients, which were associated with poor survival and control of ILC plasticity. Single-cell RNA sequencing and flow cytometry of ILCs from HCC livers identified natural killer (NK)-like cells in the non-tumour tissue, losing their cytotoxic profile as they transitioned into tumour ILC1 and NK-like-ILC3 cells. Tumour ILC composition was mediated by cytokine gradients that directed ILC plasticity towards activated tumour ILC2s. This was liver-specific and not seen in ILCs from peripheral blood mononuclear cells. Patients with high ILC2/ILC1 ratio expressed interleukin-33 in the tumour that promoted ILC2 generation, which was associated with better survival.ConclusionOur results suggest that the tumour cytokine milieu controls ILC composition and HCC outcome. Specific changes of cytokines modify ILC composition in the tumour by inducing plasticity and alter ILC function.


Sign in / Sign up

Export Citation Format

Share Document