scholarly journals Arteria: An automation system for a sequencing core facility

GigaScience ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Johan Dahlberg ◽  
Johan Hermansson ◽  
Steinar Sturlaugsson ◽  
Mariya Lysenkova ◽  
Patrik Smeds ◽  
...  

Abstract Background In recent years, nucleotide sequencing has become increasingly instrumental in both research and clinical settings. This has led to an explosive growth in sequencing data produced worldwide. As the amount of data increases, so does the need for automated solutions for data processing and analysis. The concept of workflows has gained favour in the bioinformatics community, but there is little in the scientific literature describing end-to-end automation systems. Arteria is an automation system that aims at providing a solution to the data-related operational challenges that face sequencing core facilities. Findings Arteria is built on existing open source technologies, with a modular design allowing for a community-driven effort to create plug-and-play micro-services. In this article we describe the system, elaborate on the underlying conceptual framework, and present an example implementation. Arteria can be reduced to 3 conceptual levels: orchestration (using an event-based model of automation), process (the steps involved in processing sequencing data, modelled as workflows), and execution (using a series of RESTful micro-services). This creates a system that is both flexible and scalable. Arteria-based systems have been successfully deployed at 3 sequencing core facilities. The Arteria Project code, written largely in Python, is available as open source software, and more information can be found at https://arteria-project.github.io/ . Conclusions We describe the Arteria system and the underlying conceptual framework, demonstrating how this model can be used to automate data handling and analysis in the context of a sequencing core facility.

2017 ◽  
Author(s):  
Johan Dahlberg ◽  
Johan Hermansson ◽  
Steinar Sturlaugsson ◽  
Pontus Larsson

AbstractArteria is an automation system aimed at sequencing core facilities. It is built on existing open source technologies, with a modular design allowing for a community-driven effort to create plug-and-play micro-services. Herein we describe the Arteria system and elaborate on the underlying conceptual framework. The Arteria system breaks down into three conceptual levels; orchestration, process and execution. At the orchestration level it utilizes an event-based model of automation. It models processes, e.g. the steps involved in processing sequencing data, as workflows and executes these in a micro-service based environment. This creates a system which is both flexible and scalable. The Arteria Project code is available as open source software at http://www.github.com/arteria-project.


Author(s):  
Parkhomenko Anzhelika ◽  
◽  
Tulenkov Artem ◽  
Zalyubovskiy Yaroslav

The paper presents the results of the analysis of electrical switchboards computer-aided design process features. The problems of modeling and ensuring the normal temperature mode of switchboard equipment functioning for safe operation of home automation systems are investigated. The work shows that the shortcomings of existing methods and systems of monitoring make it impossible to use them for remote monitoring of the parameters of switchboard equipment due to a whole set of structural and functional features of developed objects. The main requirements for remote monitoring subsystem are compact modular design of hardware that will save space while providing the necessary functionality, low cost, and low power consumption of the components; reliable transmission of monitoring data over long distances, and data storage for further mining. The results of the development and implementation of the method of remote monitoring of electrical switchboard equipment critical parameters are presented. The possibilities of Orange opensource software using for data visualization and intellectual analysis are shown. The identified associative rules can be used for further improvement of control scenarios of the home automation system and ensure the reliable operation of switchboard equipment. The scientific significance of the work lies in the fact that the method of remote monitoring of operational parameters of electrical switchboard has been further developed based on the developed methodology for determining conditions and types of user notifications as well as the integrated usage of wireless data transmission technologies, cloud storage technologies and data mining tools. The practical significance of the obtained results is that the introduction of the remote monitoring subsystem will increase the reliability and security of the home automation system and its attractiveness to users. Further work will focus on the intellectual analysis of the data obtained based on Bayesian networks to develop and study patterns of human activity during home automation system operation to formulate recommendations for the user and specialists to improve the control scenarios of the home automation system. Key words: home automation system, switchboard equipment, remote monitoring, temperature mode, wireless technologies, cloud service, associative rules.


2014 ◽  
Vol 32 (3) ◽  
pp. 390-402 ◽  
Author(s):  
Barbara Albee ◽  
Hsin-liang Chen

Purpose – The purpose of this study is to examine public library staff attitudes towards an open-source library automation system in the state of Indiana. The researchers were interested in understanding the library staff’s perceptions of the value of the system in performing their job duties and improving library services. Design/methodology/approach – The researchers travelled to nine public libraries every three months to survey library staff from January to December 2010. The participants completed the surveys at the libraries and were given the option to remain anonymous. The survey consisted of six questions regarding the use of the Evergreen system for work processes and basic demographic information of the staff. There were a total of 323 survey respondents. Of the 323 respondents, 57 (17.65 per cent) used the Evergreen system in their daily work routines at the library. Findings – The primary benefits reported were: ability to check the availability of library materials at other Evergreen libraries via the shared catalogue, the Evergreen system provided more functionality than their previous library automation systems and the ability to reserve materials for patrons. Research limitations/implications – This was a convenience sample. All survey participants provided their responses voluntarily during the 12-month study period. A more comprehensive sampling procedure should be considered in the future. Originality/value – The study indicated the need for improvements in the Evergreen Indiana system. Those improvements were also relevant to other open-source integrated library systems.


SLEEP ◽  
2020 ◽  
Author(s):  
Luca Menghini ◽  
Nicola Cellini ◽  
Aimee Goldstone ◽  
Fiona C Baker ◽  
Massimiliano de Zambotti

Abstract Sleep-tracking devices, particularly within the consumer sleep technology (CST) space, are increasingly used in both research and clinical settings, providing new opportunities for large-scale data collection in highly ecological conditions. Due to the fast pace of the CST industry combined with the lack of a standardized framework to evaluate the performance of sleep trackers, their accuracy and reliability in measuring sleep remains largely unknown. Here, we provide a step-by-step analytical framework for evaluating the performance of sleep trackers (including standard actigraphy), as compared with gold-standard polysomnography (PSG) or other reference methods. The analytical guidelines are based on recent recommendations for evaluating and using CST from our group and others (de Zambotti and colleagues; Depner and colleagues), and include raw data organization as well as critical analytical procedures, including discrepancy analysis, Bland–Altman plots, and epoch-by-epoch analysis. Analytical steps are accompanied by open-source R functions (depicted at https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html). In addition, an empirical sample dataset is used to describe and discuss the main outcomes of the proposed pipeline. The guidelines and the accompanying functions are aimed at standardizing the testing of CSTs performance, to not only increase the replicability of validation studies, but also to provide ready-to-use tools to researchers and clinicians. All in all, this work can help to increase the efficiency, interpretation, and quality of validation studies, and to improve the informed adoption of CST in research and clinical settings.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


2019 ◽  
Vol 9 (1) ◽  
pp. 561-570
Author(s):  
Khoa Dang ◽  
Igor Trotskii

AbstractEver growing building energy consumption requires advanced automation and monitoring solutions in order to improve building energy efficiency. Furthermore, aggregation of building automation data, similarly to industrial scenarios allows for condition monitoring and fault diagnostics of the Heating, Ventilations and Air Conditioning (HVAC) system. For existing buildings, the commissioned SCADA solutions provide historical trends, alarms management and setpoint curve adjustments, which are essential features for facility management personnel. The development in Internet of Things (IoT) and Industry 4.0, as well as software microservices enables higher system integration, data analytics and rich visualization to be integrated into the existing infrastructure. This paper presents the implementation of a technology stack, which can be used as a framework for improving existing and new building automation systems by increasing interconnection and integrating data analytics solutions. The implementation solution is realized and evaluated for a nearly zero energy building, as a case study.


2002 ◽  
Vol 17 (4) ◽  
pp. 359-388 ◽  
Author(s):  
LUDGER FIEGE ◽  
GERO MÜHL ◽  
FELIX C. GÄRTNER

Event-based systems are developed and used to integrate components in loosely coupled systems. Research and product development have focused so far on efficiency issues but neglected methodological support to build such systems. In this article, the modular design and implementation of an event system is presented which supports scopes and event mappings, two new and powerful structuring methods that facilitate engineering and coordination of components in event-based systems. We give a formal specification of scopes and event mappings within a trace-based formalism adapted from temporal logic. This is complemented by a comprehensive introduction to the event-based style, its benefits and requirements.


2018 ◽  
Vol 8 (12) ◽  
pp. 2460 ◽  
Author(s):  
Cyntia Vargas Martínez ◽  
Birgit Vogel-Heuser

System intrusions violate the security of a system. In order to maintain it, it is necessary to decrease the chances of intrusions occurring or by detecting them as soon as they ensue in order to respond to them in a timely manner. These responses are divided in two types: passive or reactive responses. Passive responses are limited to only notification and alerting; whereas, reactive responses influence the intrusion by undoing or diminishing its consequences. Unfortunately, some reactive responses may influence the underlying system where the intrusion has occurred. This is especially a concern in the field of Industrial Automation Systems, as these systems are critical and have a well-defined set of operational requirements that must be maintained. Hence, automatic reactive responses are often not considered or are limited to human intervention. This paper addresses this issue by introducing a concept for reactive protection that integrates the automatic execution of active responses that do not influence the operation of the underlying Industrial Automation System. This concept takes into consideration architectural and security trends, as well as security and operational policies of Industrial Automation Systems. It also proposes a set of reactive actions that can be taken in the presence of intrusions in order to counteract them or diminish their effects. The feasibility and applicability of the presented concept for Industrial Automation Systems is supported by the implementation and evaluation of a prototypical Reactive Protection System.


1984 ◽  
Vol 17 (2) ◽  
pp. 2585-2589 ◽  
Author(s):  
R. Heinonen ◽  
J. Ranta ◽  
B. Wahlström

Author(s):  
Prihatini .

In most laboratory LAS (Laboratory Automation System) system recently have been used. though, not all of them used theautomation system and LIS.the LAS is used for the diagnosis of diseases, because it can decrease the error factors as weel as thelaboratoric examination. Regarding to decreasing problems, the expenses of patients who staying in the hospitals could be reduced aswell as their time to stay. the purpose of this article is to know comprehensively LAS and its services in the future in the hospitals' clinicallaboratory. Because before LAS was used the diagnosis time of diseases take a long time as compared to LAS.


Sign in / Sign up

Export Citation Format

Share Document