scholarly journals Internal gravity waves in a stratified layer atop a convecting liquid core in a non-rotating spherical shell

Author(s):  
M Bouffard ◽  
B Favier ◽  
D Lecoanet ◽  
M Le Bars

Summary Seismic and magnetic observations have suggested the presence of a stably stratified layer atop Earth’s core. Such a layer could affect the morphology of the geomagnetic field and the evolution of the core, but the precise impact of this layer depends largely on its internal dynamics. Among other physical phenomena, stratified layers host internal gravity waves, which can be excited by adjacent convective motions. Internal waves are known to play an important role on the large scale dynamics of the Earth’s climate and on the long-term evolution of stars. Yet, they have received relatively little attention in the Earth’s outer core so far and deserve detailed investigations in this context. Here, we make a first step in that direction by running numerical simulations of internal gravity waves in a non-rotating spherical shell in which a stratified layer lies on top of a convective region. We use a non-linear equation of state to produce self-consistently such a two-layer system. Both propagating waves and global modes coexist in the stratified layer. We characterise the spectral properties of these waves and find that energy is distributed across a wide range of frequencies and length scales, that depends on the Prandtl number. For the control parameters considered and in the absence of rotational and magnetic effects, the mean kinetic energy in the layer is about 0.1 per cent that of the convective region. Gravity waves produce perturbations in the gravity field that may fall within the sensitivity limit of present-day instruments and could potentially be detected in available data. We finally provide a road map for future, more geophysically realistic, studies towards a more thorough understanding of the dynamics and impact of internal waves in a stratified layer atop Earth’s core.

1976 ◽  
Vol 78 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Michael Milder

The scaled vorticity Ω/N and strain ∇ ζ associated with internal waves in a weak density gradient of arbitrary depth dependence together comprise a quantity that is conserved in the usual linearized approximation. This quantity I is the volume integral of the dimensionless density DI = ½[Ω2/N2 + (∇ ζ)2]. For progressive waves the ‘kinetic’ and ‘potential’ parts are equal, and in the short-wavelength limit the density DI and flux FI are related by the ordinary group velocity: FI = DIcg. The properties of DI suggest that it may be a useful measure of local internal-wave saturation.


2008 ◽  
Vol 65 (2) ◽  
pp. 557-575 ◽  
Author(s):  
Hye-Yeong Chun ◽  
Hyun-Joo Choi ◽  
In-Sun Song

Abstract In the present study, the authors propose a way to include a nonlinear forcing effect on the momentum flux spectrum of convectively forced internal gravity waves using a nondimensional numerical model (NDM) in a two-dimensional framework. In NDM, the nonlinear forcing is represented by nonlinear advection terms multiplied by the nonlinearity factor (NF) of the thermally induced internal gravity waves for a given specified diabatic forcing. It was found that the magnitudes of the waves and resultant momentum flux above the specified forcing decrease with increasing NF due to cancellation between the two forcing mechanisms. Using the momentum flux spectrum obtained by the NDM simulations with various NFs, a scale factor for the momentum flux, normalized by the momentum flux induced by diabatic forcing alone, is formulated as a function of NF. Inclusion of the nonlinear forcing effect into current convective gravity wave drag (GWD) parameterizations, which consider diabatic forcing alone by multiplying the cloud-top momentum flux spectrum by the scale factor, is proposed. An updated convective GWD parameterization using the scale factor is implemented into the NCAR Whole Atmosphere Community Climate Model (WACCM). The 10-yr simulation results, compared with those by the original convective GWD parameterization considering diabatic forcing alone, showed that the magnitude of the zonal-mean cloud-top momentum flux is reduced for wide range of phase speed spectrum by about 10%, except in the middle latitude storm-track regions where the cloud-top momentum flux is amplified. The zonal drag forcing is determined largely by the wave propagation condition under the reduced magnitude of the cloud-top momentum flux, and its magnitude decreases in many regions, but there are several areas of increasing drag forcing, especially in the tropical upper mesosphere and lower thermosphere.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


2019 ◽  
Vol 219 (Supplement_1) ◽  
pp. S137-S151 ◽  
Author(s):  
Julien Aubert

SUMMARY The geodynamo features a broad separation between the large scale at which Earth’s magnetic field is sustained against ohmic dissipation and the small scales of the turbulent and electrically conducting underlying fluid flow in the outer core. Here, the properties of this scale separation are analysed using high-resolution numerical simulations that approach closer to Earth’s core conditions than earlier models. The new simulations are obtained by increasing the resolution and gradually relaxing the hyperdiffusive approximation of previously published low-resolution cases. This upsizing process does not perturb the previously obtained large-scale, leading-order quasi-geostrophic (QG) and first-order magneto-Archimedes-Coriolis (MAC) force balances. As a result, upsizing causes only weak transients typically lasting a fraction of a convective overturn time, thereby demonstrating the efficiency of this approach to reach extreme conditions at reduced computational cost. As Earth’s core conditions are approached in the upsized simulations, Ohmic losses dissipate up to 97 per cent of the injected convective power. Kinetic energy spectra feature a gradually broadening self-similar, power-law spectral range extending over more than a decade in length scale. In this range, the spectral energy density profile of vorticity is shown to be approximately flat between the large scale at which the magnetic field draws its energy from convection through the QG-MAC force balance and the small scale at which this energy is dissipated. The resulting velocity and density anomaly planforms in the physical space consist in large-scale columnar sheets and plumes, respectively, co-existing with small-scale vorticity filaments and density anomaly ramifications. In contrast, magnetic field planforms keep their large-scale structure after upsizing. The small-scale vorticity filaments are aligned with the large-scale magnetic field lines, thereby minimizing the dynamical influence of the Lorentz force. The diagnostic outputs of the upsized simulations are more consistent with the asymptotic QG-MAC theory than those of the low-resolution cases that they originate from, but still feature small residual deviations that may call for further theoretical refinements to account for the structuring constraints of the magnetic field on the flow.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 205
Author(s):  
Ekaterina Didenkulova ◽  
Efim Pelinovsky

Oscillating wave packets (breathers) are a significant part of the dynamics of internal gravity waves in a stratified ocean. The formation of these waves can be provoked, in particular, by the decay of long internal tidal waves. Breather interactions can significantly change the dynamics of the wave fields. In the present study, a series of numerical experiments on the interaction of breathers in the frameworks of the etalon equation of internal waves—the modified Korteweg–de Vries equation (mKdV)—were conducted. Wave field extrema, spectra, and statistical moments up to the fourth order were calculated.


2010 ◽  
Vol 67 (8) ◽  
pp. 2504-2519 ◽  
Author(s):  
Daniel Ruprecht ◽  
Rupert Klein ◽  
Andrew J. Majda

Abstract Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy. A two-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up- and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv) moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime.


2020 ◽  
Author(s):  
Claudia Stephan

<p>Idealized simulations have shown decades ago that shallow clouds generate internal gravity waves, which under certain atmospheric background conditions become trapped inside the troposphere and influence the development of clouds. These feedbacks, which occur at horizontal scales of up to several tens of km are neither resolved, nor parameterized in traditional global climate models (GCMs), while the newest generation of GCMs is starting to resolve them. The interactions between the convective boundary layer and trapped waves have almost exclusively been studied in highly idealized frameworks and it remains unclear to what degree this coupling affects the organization of clouds and convection in the real atmosphere. Here, the coupling between clouds and trapped waves is examined in storm-resolving simulations that span the entirety of the tropical Atlantic and are initialized and forced by meteorological analyses. The coupling between clouds and trapped waves is sufficiently strong to be detected in these simulations of full complexity.  Stronger upper-tropospheric westerly winds are associated with a stronger cloud-wave coupling. In the simulations this results in a highly-organized scattered cloud field with cloud spacings of about 19 km, matching the dominant trapped wavelength. Based on the large-scale atmospheric state wave theory can reliably predict the regions and times where cloud-wave feedbacks become relevant to convective organization. Theory, the simulations and satellite imagery imply a seasonal cycle in the trapping of gravity waves. </p>


1978 ◽  
Vol 85 (1) ◽  
pp. 7-31 ◽  
Author(s):  
S. A. Thorpe

This paper is concerned with two important aspects of nonlinear internal gravity waves in a stably stratified inviscid plane shear flow, their shape and their breaking, particularly in conditions which are frequently encountered in geophysical applications when the vertical gradients of the horizontal current and the density are concentrated in a fairly narrow depth interval (e.g. the thermocline in the ocean). The present theoretical and experimental study of the wave shape extends earlier work on waves in the absence of shear and shows that the shape may be significantly altered by shear, the second-harmonic terms which describe the wave profile changing sign when the shear is increased sufficiently in an appropriate sense.In the second part of the paper we show that the slope of internal waves at which breaking occurs (the particle speeds exceeding the phase speed of the waves) may be considerably reduced by the presence of shear. Internal waves on a thermocline which encounter an increasing shear, perhaps because of wind action accelerating the upper mixing layer of the ocean, may be prone to such breaking.This work may alternatively be regarded as a study of the stability of a parallel stratified shear flow in the presence of a particular finite disturbance which corresponds to internal gravity waves propagating horizontally in the plane of the flow.


2018 ◽  
Vol 615 ◽  
pp. A23 ◽  
Author(s):  
P. Auclair-Desrotour ◽  
S. Mathis ◽  
J. Laskar ◽  
J. Leconte

Context. Oceanic tides are a major source of tidal dissipation. They drive the evolution of planetary systems and the rotational dynamics of planets. However, two-dimensional (2D) models commonly used for the Earth cannot be applied to extrasolar telluric planets hosting potentially deep oceans because they ignore the three-dimensional (3D) effects related to the ocean’s vertical structure. Aims. Our goal is to investigate, in a consistant way, the importance of the contribution of internal gravity waves in the oceanic tidal response and to propose a modelling that allows one to treat a wide range of cases from shallow to deep oceans. Methods. A 3D ab initio model is developed to study the dynamics of a global planetary ocean. This model takes into account compressibility, stratification, and sphericity terms, which are usually ignored in 2D approaches. An analytic solution is computed and used to study the dependence of the tidal response on the tidal frequency and on the ocean depth and stratification. Results. In the 2D asymptotic limit, we recover the frequency-resonant behaviour due to surface inertial-gravity waves identified by early studies. As the ocean depth and Brunt–Väisälä frequency increase, the contribution of internal gravity waves grows in importance and the tidal response becomes 3D. In the case of deep oceans, the stable stratification induces resonances that can increase the tidal dissipation rate by several orders of magnitude. It is thus able to significantly affect the evolution time scale of the planetary rotation.


2014 ◽  
Vol 742 ◽  
pp. 308-339 ◽  
Author(s):  
Hugo N. Ulloa ◽  
Alberto de la Fuente ◽  
Yarko Niño

AbstractThe temporal evolution of nonlinear large-scale internal gravity waves, in a two-layer flow affected by background rotation, is studied via laboratory experiments conducted in a cylindrical tank, mounted on a rotating turntable. The internal wave field is excited by the relaxation of an initial forced tilt of the density interface ($\eta _{i}$), which generates internal waves, such as Kelvin and Poincaré waves, in response to rotation effects. The behaviour of $\eta _{i}$, in the shore region, is analysed in terms of the background rotation and the nonlinear steepening of the basin-scale waves. The results show that the degeneration of the fundamental Kelvin wave into a solitary-type wave packet is caused by nonlinear steepening and it is influenced by the background rotation. In addition, the physical scales of the leading solitary-type wave are closer to Korteweg–de Vries theory as the rotation increases. Moreover, the nonlinear interaction between the Kelvin wave and the Poincaré wave can transfer energy to higher or lower frequencies than the frequency of the fundamental Kelvin wave, as a function of the background rotation. In particular, a specific normal mode in the off-shore region could be energized by this interaction. Finally, the bulk decay rate of the fundamental Kelvin wave, $\tau _{dk}$, was investigated. The results exhibit that $\tau _{dk}$ is concordant with the Ekman damping time scale when there is no evidence of steepening in the basin-scale waves. However, as nonlinear processes increase, $\tau _{dk}$ shows a strong decrease. In this context, the nonlinear processes play an important role in the decay of the fundamental Kelvin wave, via the energy radiation to other modes. The results reported demonstrate that the background rotation and nonlinear processes are essential aspects in understanding the degeneration and the decay of large-scale internal gravity waves on enclosed basins.


Sign in / Sign up

Export Citation Format

Share Document