Pax7, Pax3 and Mamstr genes are involved in skeletal muscle impaired regeneration of dy2J/dy2J mouse model of Lama2-CMD

2019 ◽  
Vol 28 (20) ◽  
pp. 3369-3390 ◽  
Author(s):  
Nurit Yanay ◽  
Moran Elbaz ◽  
Jenya Konikov-Rozenman ◽  
Sharona Elgavish ◽  
Yuval Nevo ◽  
...  

Abstract Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10–9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin–angiotensin, epithelial–mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.

Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 61 ◽  
Author(s):  
Josiane Joseph ◽  
Dong Cho ◽  
Jason Doles

Duchenne muscular dystrophy (DMD) is a musculoskeletal disorder that causes severe morbidity and reduced lifespan. Individuals with DMD have an X-linked mutation that impairs their ability to produce functional dystrophin protein in muscle. No cure exists for this disease and the few therapies that are available do not dramatically delay disease progression. Thus, there is a need to better understand the mechanisms underlying DMD which may ultimately lead to improved treatment options. The muscular dystrophy (MDX) mouse model is frequently used to explore DMD disease traits. Though some studies of metabolism in dystrophic mice exist, few have characterized metabolic profiles of supporting cells in the diseased environment. Using nontargeted metabolomics we characterized metabolic alterations in muscle satellite cells (SCs) and serum of MDX mice. Additionally, live-cell imaging revealed MDX-derived adipose progenitor cell (APC) defects. Finally, metabolomic studies revealed a striking elevation of acylcarnitines in MDX APCs, which we show can inhibit APC proliferation. Together, these studies highlight widespread metabolic alterations in multiple progenitor cell types and serum from MDX mice and implicate dystrophy-associated metabolite imbalances in APCs as a potential contributor to adipose tissue disequilibrium in DMD.


2020 ◽  
Author(s):  
◽  
Lakmini P. Wasala

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI-COLUMBIA AT REQUEST OF AUTHOR.] Duchenne Muscular dystrophy (DMD) is the most common, progressive childhood muscular dystrophy with an X-linked inheritance. The major cause of the disease is the mutations in the dystrophin gene which results in the absence of a functional dystrophin protein. Currently there is no permanent cure for DMD. Many genetic and pharmacological approaches have resulted in tremendous improvements in animal models and advanced the mission of finding a permanent cure for DMD. Adeno associated virus (AAV) mediated micro-dystrophin gene therapy is the most promising approach to treat patients irrespective of their type of mutations. Dystrophin independent AAV gene therapies have also shown encouraging data in animal models in subsiding DMD pathology. In engineering micro-dystrophins, it is important to include the most essential regions or domains to achieve maximum benefits, that fits into the AAV. Our goal was to understand the impact of hinge 1 (H1) and hinge 4 (H4) regions in the function of a micro-dystrophin ([micro]Dys) construct. Two novel micro-dystrophins were engineered by complete deletion of either hinge 1 or hinge 4 and packaged in AAV9. Three separate groups of 3-month old male mdx4cv mice tibialis anterior muscles were injected with each novel AAV.[micro]Dys vector and parent vector separately. Three months post injection TA muscle contractile properties were evaluated. Hinge 1 deletion was tolerated by parent [micro]Dys although deletion of hinge 4 reduced the functional performance. Hinge domains played an important part in localization of [micro]Dys to the sarcolemma. Deletion of hinge 1 did not interfere with normal sarcolemmal localization whereas complete deletion of hinge 4 failed to localize [micro]Dys. Both novel [micro]Dys were able to restore dystrophin associated glycoprotein complex (DGC) proteins to the sarcolemma in dystrophin positive fibers. To further analyze which region of hinge 4 that could be devoid of [micro]Dys, we engineered additional four novel [micro]Dys with modifications in only the hinge 4 region, while hinge 1 is intact. Deletion of the region upstream of WW domain was shown to enhance the [micro]Dys function, and any other deletion reduced the performance of [micro]Dys. We also found that deletion of upstream region of WW domain did not interfere in [micro]Dys localization to sarcolemma and other deletions failed to fully restore [micro]Dys to sarcolemma. Next, we developed another micro-dystrophin that combined complete deletion of hinge 1 with deletion of the upstream region of WW domain. This latest [micro]Dys showed to preserve the muscle tetanic force similar to parent [micro]Dys. This is the first study of in-depth evaluation of the importance of the presence or absence of hinge 1 and hinge 4 in the functional performance of micro-dystrophin. These data provide valuable insights in engineering novel micro-dystrophins. One of the major cellular networks affected in DMD is the mitochondrial function and subsequent metabolic homeostasis. PGC-1a is a key transcriptional co-activator of mitochondrial biogenesis and oxidative metabolism in muscle. PGC-1a has previously studied in improving skeletal muscle pathology in mdx mouse model although its therapeutic effects on mdx cardiac pathology has not been evaluated. We delivered AAV9.PGC-1a vector systemically via the tail vein of 12-month old female mdx mice and 4-months post injected we evaluated the left ventricular hemodynamic parameters. AAV.PGC-1a treated mice showed normalization of several left ventricular hemodynamic parameters to the wild type level. Pathway protein analysis revealed overexpression of PGC-1a, resulted in the increased expression of several major transcription factors in oxidative phosphorylation, mitochondrial biogenesis, fatty acid metabolism, electron transport chain. This is the first study to report that cardiac hemodynamic improvements in 4-month treatment of AAV.PGC-1a in aged mdx mice. This study also shows that without replacing dystrophin, PGC-1a overexpression alone resulted in improving cardiac performance by improving cardiac metabolism in mdx mice. The data provided useful insights developing novel therapies in improving DMD cardiomyopathy. In the final study we used another novel isoform of PGC-1a family, PGC-1a4 which has shown to be expressed during resistance training and regulates muscle hypertrophy. As muscle hypertrophy induction has previously shown to be therapeutically effective in mdx mouse model, we delivered AAV.PGC-1a4 systemically and as intramuscular injections. In the mdx4cv mouse model, we could not overexpress the PGC-1a4 protein above the endogenous levels and no cardiac or skeletal muscle function was improved. Although intramuscular delivery of AAV.PGC-1a4 in wild type mice showed overexpression of PGC-1a4 protein above endogenous levels. Wild type mice showed improvements in eccentric force, although muscle cross sectional area or muscle weight did not reach statistical significance. Our study concluded that PGC-1a4 is not a suitable candidate for AAV gene therapy for DMD. In summary, this dissertation provides important discoveries related to development of next-generation micro-dystrophin vectors and dystrophin-independent AAV gene therapies.


2015 ◽  
Vol 309 (7) ◽  
pp. C470-C479 ◽  
Author(s):  
Dieu Hung Lao ◽  
Mary C. Esparza ◽  
Shannon N. Bremner ◽  
Indroneal Banerjee ◽  
Jianlin Zhang ◽  
...  

Emery-Dreifuss muscular dystrophy (EDMD) is a degenerative disease primarily affecting skeletal muscles in early childhood as well as cardiac muscle at later stages. EDMD is caused by a number of mutations in genes encoding proteins associated with the nuclear envelope (e.g., Emerin, Lamin A/C, and Nesprin). Recently, a novel protein, Lim-domain only 7 ( lmo7) has been reported to play a role in the molecular pathogenesis of EDMD. Prior in vitro and in vivo studies suggested the intriguing possibility that Lmo7 plays a role in skeletal or cardiac muscle pathophysiology. To further understand the in vivo role of Lmo7 in striated muscles, we generated a novel Lmo7-null ( lmo7−/−) mouse line. Using this mouse line, we examined skeletal and cardiac muscle physiology, as well as the role of Lmo7 in a model of muscular dystrophy and regeneration using the dystrophin-deficient mdx mouse model. Our results demonstrated that lmo7−/− mice had no abnormalities in skeletal muscle morphology, physiological function, or regeneration. Cardiac function was also unaffected. Moreover, we found that ablation of lmo7 in mdx mice had no effect on the observed myopathy and muscular regeneration exhibited by mdx mice. Molecular analyses also showed no changes in dystrophin complex factors, MAPK pathway components, and Emerin levels in lmo7 knockout mice. Taken together, we conclude that Lmo7 is dispensable for skeletal muscle and cardiac physiology and pathophysiology.


2016 ◽  
Vol 594 (11) ◽  
pp. 3095-3110 ◽  
Author(s):  
Jessica R. Terrill ◽  
Gavin J. Pinniger ◽  
Jamie A. Graves ◽  
Miranda D. Grounds ◽  
Peter G. Arthur

2004 ◽  
Vol 18 (12) ◽  
pp. 1404-1406 ◽  
Author(s):  
Mina Ryten ◽  
Shi Yu Yang ◽  
Philip M. Dunn ◽  
Geoffrey Goldspink ◽  
Geoffrey Burnstock

2022 ◽  
Vol 23 (2) ◽  
pp. 958
Author(s):  
Marco Ponzetti ◽  
Argia Ucci ◽  
Antonio Maurizi ◽  
Luca Giacchi ◽  
Anna Teti ◽  
...  

Lipocalin 2 (Lcn2) is an adipokine involved in bone and energy metabolism. Its serum levels correlate with bone mechanical unloading and inflammation, two conditions representing hallmarks of Duchenne Muscular Dystrophy (DMD). Therefore, we investigated the role of Lcn2 in bone loss induced by muscle failure in the MDX mouse model of DMD. We found increased Lcn2 serum levels in MDX mice at 1, 3, 6, and 12 months of age. Consistently, Lcn2 mRNA was higher in MDX versus WT muscles. Immunohistochemistry showed Lcn2 expression in mononuclear cells between muscle fibres and in muscle fibres, thus confirming the gene expression results. We then ablated Lcn2 in MDX mice, breeding them with Lcn2−/− mice (MDXxLcn2−/−), resulting in a higher percentage of trabecular volume/total tissue volume compared to MDX mice, likely due to reduced bone resorption. Moreover, MDXxLcn2−/− mice presented with higher grip strength, increased intact muscle fibres, and reduced serum creatine kinase levels compared to MDX. Consistently, blocking Lcn2 by treating 2-month-old MDX mice with an anti-Lcn2 monoclonal antibody (Lcn2Ab) increased trabecular volume, while reducing osteoclast surface/bone surface compared to MDX mice treated with irrelevant IgG. Grip force was also increased, and diaphragm fibrosis was reduced by the Lcn2Ab. These results suggest that Lcn2 could be a possible therapeutic target to treat DMD-induced bone loss.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Qinglu Li ◽  
Mary Garry

Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy caused by a mutation of the dystrophin gene at locus Xp21, located on the short arm of the X chromosome. Muscle wasting and weakness are common in DMD and in the murine mdx model. We previously demonstrated Group III and IV afferent neurons, which innervate skeletal muscle and control blood pressure and heart rate in response to exercise, are abnormal in settings of ischemia and atrophy; such as cardiomyopathy. We hypothesized that these afferent neurons would also display abnormalities in the mdx mouse. To test this hypothesis, we developed a decerebrate mouse model using 10 wk and 6 mo old male BL10 WT and MDX mice to test mean arterial pressure (MAP) responses to intra-arterial capsaicin (IA-Cap; a specific stimulant of group IV afferent neurons). Mice were anesthetized and MAP was continuously recorded with a pressure transducer in the left carotid artery after which the animal was rendered decerebrate. Following decerebration, anesthesia was discontinued and IA-Cap (0,003-1ug/100ul) was delivered via the left common iliac artery. In rats, we have demonstrated this to be a valid model for evaluating MAP responses to activation of metabolically active afferent neurons. We observed that MAP increased in a dose-related fashion in both 10wk and 6 mo old WT and MDX, while 10 wk old MDX mouse had a normal response, the 6 months MDX mouse response was significantly blunted when compared to WT. To test whether these abnormalities are related to the onset of cardiomyopathy, Echocardiography was performed using 6 months old BL10 WT and MDX mice, no abnormality was found in terms of LV dimensions and function in MDX mice comparing with WT mice. Further studies will be performed to determine whether these abnormalities are inherent to changes in the skeletal muscle of the mdx mouse. We conclude that this murine model displays pressor responses to IA-Cap, similar to the rat and that MDX mice have a blunted blood pressure response to IA-Cap. These results indicate that abnormalities exist within the skeletal muscle afferent neurons in the mdx model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rachele Rossi ◽  
Maria Sofia Falzarano ◽  
Hana Osman ◽  
Annarita Armaroli ◽  
Chiara Scotton ◽  
...  

Duchenne muscular dystrophy (DMD) is a rare genetic disease due to dystrophin gene mutations which cause progressive weakness and muscle wasting. Circadian rhythm coordinates biological processes with the 24-h cycle and it plays a key role in maintaining muscle functions, both in animal models and in humans. We explored expression profiles of circadian circuit master genes both in Duchenne muscular dystrophy skeletal muscle and in its animal model, the mdx mouse. We designed a customized, mouse-specific Fluidic-Card-TaqMan-based assay (Fluid-CIRC) containing thirty-two genes related to circadian rhythm and muscle regeneration and analyzed gastrocnemius and tibialis anterior muscles from both unexercised and exercised mdx mice. Based on this first analysis, we prioritized the 7 most deregulated genes in mdx mice and tested their expression in skeletal muscle biopsies from 10 Duchenne patients. We found that CSNK1E, SIRT1, and MYOG are upregulated in DMD patient biopsies, consistent with the mdx data. We also demonstrated that their proteins are detectable and measurable in the DMD patients’ plasma. We suggest that CSNK1E, SIRT1, and MYOG might represent exploratory circadian biomarkers in DMD.


Sign in / Sign up

Export Citation Format

Share Document