scholarly journals Endometrial inflammasome activation accompanies menstruation and may have implications for systemic inflammatory events of the menstrual cycle

2020 ◽  
Vol 35 (6) ◽  
pp. 1363-1376
Author(s):  
Aida Azlan ◽  
Lois A Salamonsen ◽  
Jennifer Hutchison ◽  
Jemma Evans

Abstract STUDY QUESTION Does NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome activation within decidualized endometrial stromal cells accompany menstruation and is this reflected systemically? SUMMARY ANSWER Components of the NLRP3 inflammasome immunolocalize to decidualized endometrial stromal cells immediately prior to menstruation, and are activated in an in vitro model of menstruation, as evidenced by downstream interleukin (IL)-1beta and IL-18 release, this being reflected systemically in vivo. WHAT IS KNOWN ALREADY Menstruation is a highly inflammatory event associated with activation of NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells), local release of chemokines and cytokines and inflammatory leukocyte influx. Systemically, chemokines and cytokines fluctuate across the menstrual cycle. STUDY DESIGN, SIZE, DURATION This study examined the NLRP3 inflammasome and activation of downstream IL-1beta and IL-18 in endometrial tissues from women of known fertility (≥1 previous parous pregnancy) across the menstrual cycle (n ≥ 8 per cycle phase), serum from women during the proliferative, secretory and menstrual phases (≥9 per cycle phase) of the cycle and menstrual fluid collected on Day 2 of menses (n = 18). Endometrial stromal cells isolated from endometrial tissue biopsies (n = 10 in total) were used for an in vitro model of pre-menstrual hormone withdrawal. PARTICIPANTS/MATERIALS, SETTING, METHODS Expression and localization of components of the NLRP3 inflammasome (NLRP3 & apoptosis-associated speck–caspase recruit domain [ASC]) in endometrial tissues was performed by immunohistochemistry. Unbiased digital quantification of immunohistochemical staining allowed determination of different patterns of expression across the menstrual cycle. Serum from women across the menstrual cycle was examined for IL-1beta and IL-18 concentrations by ELISA. An in vitro model of hormone withdrawal from estrogen/progestin decidualized endometrial stromal cells was used to more carefully examine activation of the NLRP3 inflammasome. Endometrial stromal cells isolated from endometrial tissue biopsies (n = 10) were treated with estrogen/medroxyprogesterone acetate for 12 days to induce decidualization (assessed by release of prolactin) followed by withdrawal of steroid hormone support. Activation of NLRP3, & ASC in these cells was examined on Days 0–3 after hormone withdrawal by Western immunoblotting. Release of IL-1beta and IL-18 examined during decidualization and across the same time course of hormone withdrawal by ELISA. Specific involvement of NLRP3 inflammasome activation in IL-1beta and IL-18 release after hormone withdrawal was investigated via application of the NLRP3 inflammasome inhibitor MCC950 at the time of hormone withdrawal. MAIN RESULTS AND THE ROLE OF CHANCE Critical components of the NLRP3 inflammasome (NLRP3, ASC) were increased in menstrual phase endometrial tissues versus early secretory phase tissues (P < 0.05, n/s, respectively). NLRP3 and ASC were also elevated in the proliferative versus secretory phase of the cycle (P < 0.01, n/s, respectively) with ASC also significantly increased in the late-secretory versus early-secretory phase (P < 0.05). The pattern of activation was reflected in systemic levels of the inflammasome mediators, with IL-1beta and IL-18 elevated in peripheral blood serum during menstruation (Day 2 of menses) versus secretory phase (P = 0.026, P = 0.0042, respectively) and significantly elevated in menstrual fluid (Day 2 of menses) versus systemic levels across all cycle phases, suggesting that local inflammasome activation within the endometrium during menses is reflected by systemic inflammation. NLRP3 and ASC localized to decidualized cells adjacent to the spiral arterioles in the late secretory phase of the menstrual cycle, where the menstrual cascade is thought to be initiated, and to endometrial leukocytes during the menstrual phase. NLRP3 also localized to glandular epithelial cells during the late-secretory/menstrual phases. Localization of both NLRP3 and ASC switched from predominant epithelial localization during the early-secretory phase to stromal localization during the late-secretory/menstrual phase. Using an in vitro model of hormone withdrawal from decidualized human endometrial stromal cells, we demonstrated progressive activation of NLRP3 and ASC after hormone withdrawal increasing from Day 0 of withdrawal/Day 12 of decidualization to Day 3 of withdrawal. Downstream release of IL-1beta and IL-18 from decidualized stromal cells after hormone withdrawal followed the same pattern with the role of NLRP3 inflammasome activation confirmed via the inhibition of IL-1beta and IL-18 release upon application of MCC950. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study uses descriptive and semi-quantitative measures of NLRP3 inflammasome activation within endometrial tissues. Further, the in vitro model of pre-menstrual hormone withdrawal may not accurately recapitulate the in vivo environment as only one cell type is present and medroxyprogesterone acetate replaced natural progesterone due to its longer stability. WIDER IMPLICATIONS OF THE FINDINGS We provide novel evidence that the NLRP3 inflammasome is activated within decidualized endometrial stromal cells immediately prior to menses and that local activation of the inflammasome within the endometrium appears to be reflected systemically in by activation of downstream IL-1beta and IL-18. Given the prevalence of menstrual disorders associated with inflammation including dysmenorrhoea and aspects of pre-menstrual syndrome, the inflammasome could be a novel target for ameliorating such burdens. STUDY FUNDING/COMPETING INTEREST(S) The authors have no competing interests. J.E. was supported by a Fielding Foundation fellowship, NHMRC project grants (#1139489 and #1141946) and The Hudson Institute of Medical Research. L.A.S. was supported by The Hudson Institute of Medical Research and J.H. by an Australian Government Research Training Program Scholarship. We acknowledge the Victorian Government’s Operating Infrastructure funding to the Hudson Institute. TRIAL REGISTRATION NUMBER N/A

2001 ◽  
Vol 86 (12) ◽  
pp. 5964-5972
Author(s):  
Antonis Makrigiannakis ◽  
George Coukos ◽  
Anastasia Mantani ◽  
Prokopis Prokopakis ◽  
Geoffrey Trew ◽  
...  

The Wilms’ tumor suppressor gene (WT1) encodes a zinc-finger containing transcription factor that is selectively expressed in the developing urogenital tract and functions as a tissue-specific developmental regulator. In addition to its gene-regulatory function through DNA binding properties, WT-1 also regulates transcription by formation of protein-protein complexes. These properties place WT-1 as a major regulator of cell growth and differentiation. In view of these observations, we studied WT1 mRNA and protein in human endometrial extracts and in endometrial stromal cells (ESCs) differentiating into decidual cells in vitro, by RT-PCR and Western blotting, respectively. WT1 protein expression was also studied in situ in the proliferative and the secretory phase of the menstrual cycle in the early pregnant state. Analysis by PCR of total RNA prepared from human ESCs demonstrated the presence of WT1 mRNA and four WT1 mRNA splice variants. Western blot analysis of nuclear protein extracts from ESCs yielded one immunoreactive protein of the expected size (approximately 52–54 kDa) recognized by the WT1 antibody. Immunohistochemical staining showed that WT1 protein is localized only to nuclei of human endometrial stromal cells. It remains constant in the proliferative and the secretory phase of the menstrual cycle and is increased remarkably during decidualization in early pregnancy. ESCs decidualized in vitro were investigated for WT-1 expression, which confirmed that decidualizing stimuli (E2, medroxy-progesterone-acetate, and relaxin for 12 d or cAMP and progesterone for 1–4 d) induced WT-1 mRNA (P < 0.05) and increased protein levels (P < 0.05). These data indicate that in humans the WT1 gene is expressed in ESCs and its mRNA and protein levels remain constant in the proliferative and the secretory phase of the menstrual cycle and that WT1 mRNA and protein expression increases significantly in ESCs when these cells differentiate into decidual cells.


1989 ◽  
Vol 52 (5) ◽  
pp. 761-768 ◽  
Author(s):  
Juan C. Irwin ◽  
David Kirk ◽  
Roger J.B. King ◽  
Martin M. Quigley ◽  
Ralph B.L. Gwatkin

Reproduction ◽  
2012 ◽  
Vol 143 (4) ◽  
pp. 531-538 ◽  
Author(s):  
Huan Yang ◽  
Yuping Zhou ◽  
Benjiamin Edelshain ◽  
Frederick Schatz ◽  
Charles J Lockwood ◽  
...  

FKBP4 (FKBP52) and FKBP5 (FKBP51) are progestin receptor (PR) co-chaperone proteins that enhance and inhibit, respectively, progestin-mediated transcription by PR. Here, we examinedFKBP4andFKBP5expression in the eutopic endometrium of fertile women with endometriosis and effects of FKBP4 and FKBP5 on the decidualization of human endometrial stromal cells (HESCs), and assessed HOXA10 regulation of FKBP4. Expression ofFKBP4mRNA was increased in the late proliferative phase and remained elevated throughout the secretory phase.FKBP5expression was low and remained constant throughout the menstrual cycle. Compared with controls,FKBP4mRNA expression was decreased in the endometrium of women with endometriosis, whereas no significant endometriosis-related change was seen forFKBP5. Cultured HESCs were treated with eitherFKBP4orFKBP5siRNA and then decidualized by incubation with progesterone (P4) and 8-bromoadenosine cAMP. Treatment of HESCs withFKBP4siRNA resulted in 60% lowerIGFBP1expression. In contrast, incubation withFKBP5siRNA did not significantly decreaseIGFBP1expression duringin vitrodecidualization.HOXA10andFKBP4expression increased in parallel duringin vitrodecidualization. In HESCs, overexpressed HOXA10 enhanced FKBP4 mRNA and protein levels, whereas HOXA10 knockdown decreased FKBP4 mRNA and protein levels compared with controls. Similarly, duringin vitrodecidualization,FKBP4expression was decreased in HOXA10-silenced cells. EnhancedHOXA10expression in HESCs elicits a decidualization mediating increase inFKBP4expression. The findings are consistent with the observation that women with endometriosis have diminishedFKBP4expression leading to impaired decidualization and infertility. The P4resistance seen in endometriosis may be mediated through HOXA10-regulatedFKBP4expression.


2012 ◽  
Vol 4 (9) ◽  
pp. 1090 ◽  
Author(s):  
Zhenling Chen ◽  
Yi Dai ◽  
Zhe Dong ◽  
Menghui Li ◽  
Xuan Mu ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6837
Author(s):  
Pauline Rozier ◽  
Marie Maumus ◽  
Claire Bony ◽  
Alexandre Thibault Jacques Maria ◽  
Florence Sabatier ◽  
...  

Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.


2016 ◽  
Vol 340 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Roberta Bonafede ◽  
Ilaria Scambi ◽  
Daniele Peroni ◽  
Valentina Potrich ◽  
Federico Boschi ◽  
...  

Cytotherapy ◽  
2010 ◽  
Vol 12 (7) ◽  
pp. 870-880 ◽  
Author(s):  
Katrin Montzka ◽  
Tobias Führmann ◽  
Jochen Müller-Ehmsen ◽  
Michael Wöltje ◽  
Gary A. Brook

Sign in / Sign up

Export Citation Format

Share Document