scholarly journals Multistressor Impacts of Warming and Acidification of the Ocean on Marine Invertebrates' Life Histories

2013 ◽  
Vol 53 (4) ◽  
pp. 582-596 ◽  
Author(s):  
M. Byrne ◽  
R. Przeslawski
2018 ◽  
pp. 151-178
Author(s):  
Richard R. Strathmann

Modes of development of marine crustaceans and other marine invertebrates include presence or absence of a larval stage, of larval feeding, and of maternal protection of offspring. These different developmental modes impose different compromises (trade-offs) between the number of offspring and their size or the extent of maternal protection. Crustaceans differ from many marine animals in not shedding eggs prior to fertilization, which eliminates the complication of selection on size of eggs as a target for sperm. Features shared with marine invertebrates of several phyla include rare and ancient origins of feeding larvae, irreversible losses of a feeding larval stage, a constraint on brooding imposed by embryos’ need for oxygen, and possible benefits from slower development of protected embryos. Crustaceans differ, however, in having a diverse exoskeletal tool kit that has provided unusual capabilities. Nauplii and zoeae are diverse in form, behavior, and habitat, despite each being nominally one type of larva. Nauplii, as feeding larvae, have adapted to both the benthos and plankton. Settling stages (cyprids and decapodids) with enhanced speed have evolved twice. Some very large adults can supply their large broods with oxygen. Capacity for defense of offspring and home has led a few times to eusociality. The need to molt to grow and change form imposes episodic risk and growth and, in some cases, links evolution of egg size and size at metamorphosis. Crustaceans’ diverse life histories enable comparisons with broad implications for marine invertebrates: opportunity for dispersal is similar for larvae and adults of some crustaceans, demonstrating that marine larvae need not be adaptations for dispersal; development from very small eggs is enabled by less equipment needed for first larval feeding and also by postlarval stages being parasites; eggs shed into the water suffer greater mortality than planktonic larvae or brooded eggs, yet some planktonic crustaceans depend on benthic resting eggs for persistence of populations; larvae escape predation in diverse ways, and bigger larvae are not consistently safer; predation near the seafloor makes settlement a risky stage. Parallels with other taxa are numerous, but the crustacean exoskeletal tool kit has conferred unusual evolutionary opportunities and constraints. Even among marine crustaceans, however, evolutionary options for life histories differ among clades because of rare evolutionary origins of traits of larvae and mothers and biased evolutionary transitions in those traits.


Abiotic variables and biotic interactions can act on variation in life history traits, ultimately leading to divergence in reproductive mode. Marine invertebrates have a remarkable diversity in such strategies, sometimes even between closely related species. It is this natural diversity that lends itself to employing a powerful comparative approach, both for particular morphological characteristics as well as molecular signatures from developmental genes. For example, complex life histories, where a larval stage is interposed between the embryo and juvenile, likely represent the product of numerous selection pressures, historical and current, that have shaped the diversity of larval stages in extant marine species. In fact, the very question about “what is a larva?” has to be addressed, as it is so intimately connected to bentho-planktonic life cycle and metamorphosis. Furthermore, novel larval types have evolved in particular lineages and larvae have been secondarily lost in others. This in itself creates an interesting and exciting playground to test evolutionary developmental hypotheses....


Developmental plasticity during the early life histories of marine invertebrates is a fascinating opportunity to study the interplay between ecology and evolution. In particular, some embryos and larvae initiate asexual reproduction while completing their development. This chapter examines the mode, frequency, and taxonomic diversity of asexual reproduction that occurs between the zygotic and the juvenile stages. Special attention is given to the phylum Echinodermata, where asexual reproduction during embryonic and larval development has been best studied. An emphasis is also placed on the factors that have been identified as likely inducers of asexual reproduction and an assessment of the likelihood that asexual reproduction is an adaptive response to these factors. Lastly, several key open questions are identified as potential avenues for future research about the causes and consequences of asexual reproduction by the developmental stages of marine invertebrates.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6151 ◽  
Author(s):  
Daniel Doherty-Weason ◽  
Fernanda X. Oyarzun ◽  
Luciano Vera ◽  
Miguel Bascur ◽  
Fabián Guzmán ◽  
...  

In marine invertebrates, the modes of development at early stages are related to the type and capacity of larval feeding to achieve growth. Therefore, studying the factors that determine larval feeding strategies can help to understand the diversity of life histories and evolution of marine invertebrates. The polychaete Boccardia wellingtonensis is a poecilogonous species that encapsulates and incubates its offspring. This species produces two types of larvae: (1) larvae that do not feed within the capsule and hatch as planktotrophic larvae (indirect development), and (2) adelphophagic larvae that feed on nurse eggs and other larvae inside the capsule to hatch as advanced larvae or juveniles (direct development). Otherwise, the larval types are indistinguishable at the same stage of development. The non-apparent morphological differences between both types of larvae suggest that other factors are influencing their feeding behavior. This work studied the potential role of the activity of 19 digestive enzymes on the different feeding capacities of planktotrophic and adelphophagic larvae of B. wellingtonensis. Also, differences in larval feeding structures and the larval capacity to feed from intracapsular fluid were evaluated by electron and fluorescence microscopy. Results showed that both types of larvae present similar feeding structures and had the capacity to ingest intracapsular fluid protein. Adelphophagic larvae showed overall the highest activities of digestive enzymes. Significant differences between larval types were observed in nine enzymes related to the use of internal and external nutritional sources. Given that larval feeding is closely related to larval development in species with encapsulation, this work supports that the study of the digestive enzymatic machinery of larvae may contribute to understanding the evolution of developmental modes.


Diversity ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Rachel Collin ◽  
Dagoberto Venera-Pontón ◽  
Amy Driskell ◽  
Kenneth Macdonald ◽  
Michael Boyle

Lingulids and discinids are the only brachiopods that exhibit life histories that include a feeding planktonic stage usually referred to as a “larva”. We collected planktotrophic brachiopod larvae from the Pacific and Caribbean coasts of Panama and took a DNA barcoding approach with mitochondrial cytochrome c oxidase subunit I (COI), mitochondrial ribosomal 16S, and nuclear ribosomal 18S genes to identify those larvae and to estimate their diversity in the region. We observed specimens from both coasts with distinct morphologies typical of lingulid and discinid larvae. COI and 16S were sequenced successfully for the lingulid larvae but failed consistently for all discinid larvae. 18S was sequenced successfully for larvae from both families. Sequence data from each gene revealed one lingulid operational taxonomic unit (OTU) from Bocas del Toro on the Caribbean coast, and one lingulid OTU from the Bay of Panama on the Pacific coast. These OTUs differed by >20% for COI, >10% for 16S and ~0.5% for 18S. Both OTUs clustered with GenBank sequences of Glottidia species, the only genus of lingulids in the Americas, but were distinct from G. pyramidata the only species reported for the Caribbean. Analysis of 18S sequence data for discinid larvae recovered 2 OTUs, one exclusively from the Pacific and one with a mixture of Pacific and Caribbean larvae. The 18S marker does not provide enough resolution to distinguish between species, and comparisons with GenBank sequences suggest that one OTU includes Pelagodiscus species, while the other may include Discradisca species. When compared with other marine invertebrates, our surveys of brachiopod larvae through DNA barcoding show relatively low levels of diversity for Panama.


2005 ◽  
Vol 1 (4) ◽  
pp. 450-453 ◽  
Author(s):  
J.A Addison ◽  
M.W Hart

Patterns of population genetic variation have frequently been understood as consequences of life history covariates such as dispersal ability and breeding systems (e.g. selfing). For example, marine invertebrates show enormous variation in life history traits that are correlated with the extent of gene flow between populations and the magnitude of differentiation among populations at neutral genetic markers ( F ST ). Here we document an unexpected correlation between marine invertebrate life histories and deviation from Hardy–Weinberg equilibrium (non-zero values of F IS , the inbreeding coefficient). F IS values were significantly higher in studies of species with free-spawned planktonic sperm than in studies of species that copulate or have some form of direct sperm transfer to females or benthic egg masses. This result was robust to several different analytical approaches. We note several mechanisms that might contribute to this pattern, and appeal for more studies and ideas that might help to explain our observations.


Author(s):  
E N Branam ◽  
J Y Wong ◽  
B K K Chan ◽  
K Y K Chan

Abstract Many marine invertebrates have complex life histories that begin with a planktonic larval stage. Similar to other plankton, these larval invertebrates often possess protruding body extensions, but their function beyond predator deterrence is not well-documented. For example, the planktonic nauplii of crustaceans have spines. Using the epibiotic pedunculate barnacle Octolasmis spp., we investigated how the dorsal thoracic spine affects swimming and fluid disturbance by comparing nauplii with their spines partially removed against those with intact spines. Our motion analysis showed that amputated Octolasmis spp. swam slower, in jerkier trajectories, and were less efficient per stroke cycle than those with intact spines. Amputees showed alterations in limb beat pattern: larger beat amplitude, increased phase lag, and reduced contralateral symmetry. These changes might partially help increase propulsive force generation and streamline the flow, but were insufficient to restore full function. Particle image velocimetry further showed that amputees had a larger relative area of influence, implying elevated risk by rheotactic predator. Body extensions and their interactions with limb motion play important biomechanical roles in shaping larval performance, which likely influences the evolution of form.


Sign in / Sign up

Export Citation Format

Share Document